We study the time evolution of early universe which is developed by a cosmological constant $Lambda_4$ and supersymmetric Yang-Mills (SYM) fields in the Friedmann-Robertson-Walker (FRW) space-time. The renormalized vacuum expectation value of energy-momentum tensor of the SYM theory is obtained in a holographic way. It includes a radiation of the SYM field, parametrized as $C$. The evolution is controlled by this radiation $C$ and the cosmological constant $Lambda_4$. For positive $Lambda_4$, an inflationary solution is obtained at late time. When $C$ is added, the quantum mechanical situation at early time is fairly changed. Here we perform the early time analysis in terms of two different approaches, (i) the Wheeler-DeWitt equation and (ii) Lorentzian path-integral with the Picard-Lefschetz method by introducing an effective action. The results of two methods are compared.