Do you want to publish a course? Click here

Richardson-Gaudin Configuration-Interaction for nuclear pairing correlations

445   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Background: The nuclear many-body system is a strongly correlated quantum system, posing serious challenges for perturbative approaches starting from uncorrelated reference states. The last decade has witnessed considerable progress in the accurate treatment of pairing correlations, one of the major components in medium-sized nuclei, reaching accuracies below the 1% level of the correlation energy. Purpose: Development of a quantum many-body method for pairing correlations that is (a) competitive in the 1% error range, and (b) can be systematically improved with a fast (exponential) convergence rate. Method: The present paper capitalizes upon ideas from Richardson-Gaudin integrability. The proposed method is a two-step approach. The first step consists of the optimization of a Richardson-Gaudin ground state as variational trial state. At the second step, the complete set of excited states on top of this Richardson-Gaudin ground state is used as an optimal basis for a Configuration Interaction method in an increasingly large effective Hilbert space. Results: The performance of the variational Richardson-Gaudin (varRG) and Richardson-Gaudin Configuration Interaction (RGCI) method is benchmarked against exact results using an effective $G$-matrix interaction for the Sn region. The varRG already reaches accuracies around the 1% level of the correlation energies, and the RGCI step sees an additional improvement scaling exponentially with the size of the effective Hilbert space. Conclusions: The Richardson-Gaudin models of integrability provide an optimized complete basis set for pairing correlations.



rate research

Read More

Pairing correlations in the even-even A=102-130 Sn isotopes are discussed, based on the Richardson-Gaudin variables in an exact Woods-Saxon plus reduced BCS pairing framework. The integrability of the model sheds light on the pairing correlations, in particular on the previously reported sub-shell structure.
The structure and density dependence of the pairing gap in infinite matter is relevant for astrophysical phenomena and provides a starting point for the discussion of pairing properties in nuclear structure. Short-range correlations can significantly deplete the available single-particle strength around the Fermi surface and thus provide a reduction mechanism of the pairing gap. Here, we study this effect in the singlet and triplet channels of both neutron matter and symmetric nuclear matter. Our calculations use phase-shift equivalent interactions and chiral two-body and three-body interactions as a starting point. We find an unambiguous reduction of the gap in all channels with very small dependence on the NN force in the singlet neutron matter and the triplet nuclear matter channel. In the latter channel, short range correlations alone provide a 50% reduction of the pairing gap.
Applying a variational multiparticle-multihole configuration mixing method whose purpose is to include correlations beyond the mean field in a unified way without particle number and Pauli principle violations, we investigate pairing-like correlations in the ground states of $ ^{116}$Sn,$ ^{106}$Sn and $ ^{100}$Sn. The same effective nucleon-nucleon interaction namely, the D1S parameterization of the Gogny force is used to derive both the mean field and correlation components of nuclear wave functions. Calculations are performed using an axially symetric representation. The structure of correlated wave functions, their convergence with respect to the number of particle-hole excitations and the influence of correlations on single-particle level spectra and occupation probabilities are analyzed and compared with results obtained with the same two-body effective interaction from BCS, Hartree-Fock-Bogoliubov and particle number projected after variation BCS approaches. Calculations of nuclear radii and the first theoretical excited $0^+$ states are compared with experimental data.
83 - Pieter W. Claeys 2018
This thesis presents an introduction to the class of Richardson-Gaudin integrable models, with special focus on the Bethe ansatz wave function, and investigates ways of applying the properties of Richardson-Gaudin models both in and out of integrability. A framework is outlined for the numerical and theoretical treatment of these systems, exposing a duality allowing the Bethe equations to be solved numerically. This is extended to the calculation of inner products and correlation functions. Using this framework, the influence of particle exchange on the Bethe ansatz is discussed, after which it is shown how the Bethe ansatz is able to accurately model wave functions of non-integrable models in two different settings. First, a variational approach is outlined for stationary models where integrability-breaking perturbations are explicitly introduced. Second, an alternative way of breaking integrability is through the introduction of dynamics and periodic driving, where it is shown how integrability can be used to model the resulting Floquet many-body resonances. Throughout this work, it is shown how the clear-cut structure and relatively large freedom in Richardson-Gaudin models makes them ideal for an investigation of the general principles of integrability, as well as being a perfect testing ground for the development of new quantum many-body techniques beyond integrability.
We present a variational method for approximating the ground state of spin models close to (Richardson-Gaudin) integrability. This is done by variationally optimizing eigenstates of integrable Richardson-Gaudin models, where the toolbox of integrability allows for an efficient evaluation and minimization of the energy functional. The method is shown to return exact results for integrable models and improve substantially on perturbation theory for models close to integrability. For large integrability-breaking interactions, it is shown how (avoided) level crossings necessitate the use of excited states of integrable Hamiltonians in order to accurately describe the ground states of general non-integrable models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا