No Arabic abstract
Based on an expert systems approach, the issue of community detection can be conceptualized as a clustering model for networks. Building upon this further, community structure can be measured through a clustering coefficient, which is generated from the number of existing triangles around the nodes over the number of triangles that can be hypothetically constructed. This paper provides a new definition of the clustering coefficient for weighted networks under a generalized definition of triangles. Specifically, a novel concept of triangles is introduced, based on the assumption that, should the aggregate weight of two arcs be strong enough, a link between the uncommon nodes can be induced. Beyond the intuitive meaning of such generalized triangles in the social context, we also explore the usefulness of them for gaining insights into the topological structure of the underlying network. Empirical experiments on the standard networks of 500 commercial US airports and on the nervous system of the Caenorhabditis elegans support the theoretical framework and allow a comparison between our proposal and the standard definition of clustering coefficient.
The information theoretic quantity known as mutual information finds wide use in classification and community detection analyses to compare two classifications of the same set of objects into groups. In the context of classification algorithms, for instance, it is often used to compare discovered classes to known ground truth and hence to quantify algorithm performance. Here we argue that the standard mutual information, as commonly defined, omits a crucial term which can become large under real-world conditions, producing results that can be substantially in error. We demonstrate how to correct this error and define a mutual information that works in all cases. We discuss practical implementation of the new measure and give some example applications.
We introduce a new paradigm that is important for community detection in the realm of network analysis. Networks contain a set of strong, dominant communities, which interfere with the detection of weak, natural community structure. When most of the members of the weak communities also belong to stronger communities, they are extremely hard to be uncovered. We call the weak communities the hidden community structure. We present a novel approach called HICODE (HIdden COmmunity DEtection) that identifies the hidden community structure as well as the dominant community structure. By weakening the strength of the dominant structure, one can uncover the hidden structure beneath. Likewise, by reducing the strength of the hidden structure, one can more accurately identify the dominant structure. In this way, HICODE tackles both tasks simultaneously. Extensive experiments on real-world networks demonstrate that HICODE outperforms several state-of-the-art community detection methods in uncovering both the dominant and the hidden structure. In the Facebook university social networks, we find multiple non-redundant sets of communities that are strongly associated with residential hall, year of registration or career position of the faculties or students, while the state-of-the-art algorithms mainly locate the dominant ground truth category. In the Due to the difficulty of labeling all ground truth communities in real-world datasets, HICODE provides a promising approach to pinpoint the existing latent communities and uncover communities for which there is no ground truth. Finding this unknown structure is an extremely important community detection problem.
A distinguishing property of communities in networks is that cycles are more prevalent within communities than across communities. Thus, the detection of these communities may be aided through the incorporation of measures of the local richness of the cyclic structure. In this paper, we introduce renewal non-backtracking random walks (RNBRW) as a way of quantifying this structure. RNBRW gives a weight to each edge equal to the probability that a non-backtracking random walk completes a cycle with that edge. Hence, edges with larger weights may be thought of as more important to the formation of cycles. Of note, since separate random walks can be performed in parallel, RNBRW weights can be estimated very quickly, even for large graphs. We give simulation results showing that pre-weighting edges through RNBRW may substantially improve the performance of common community detection algorithms. Our results suggest that RNBRW is especially efficient for the challenging case of detecting communities in sparse graphs.
Community structures detection in signed network is very important for understanding not only the topology structures of signed networks, but also the functions of them, such as information diffusion, epidemic spreading, etc. In this paper, we develop a joint nonnegative matrix factorization model to detect community structures. In addition, we propose modified partition density to evaluate the quality of community structures. We use it to determine the appropriate number of communities. The effectiveness of our approach is demonstrated based on both synthetic and real-world networks.
Random walk-based sampling methods are gaining popularity and importance in characterizing large networks. While powerful, they suffer from the slow mixing problem when the graph is loosely connected, which results in poor estimation accuracy. Random walk with jumps (RWwJ) can address the slow mixing problem but it is inapplicable if the graph does not support uniform vertex sampling (UNI). In this work, we develop methods that can efficiently sample a graph without the necessity of UNI but still enjoy the similar benefits as RWwJ. We observe that many graphs under study, called target graphs, do not exist in isolation. In many situations, a target graph is related to an auxiliary graph and a bipartite graph, and they together form a better connected {em two-layered network structure}. This new viewpoint brings extra benefits to graph sampling: if directly sampling a target graph is difficult, we can sample it indirectly with the assistance of the other two graphs. We propose a series of new graph sampling techniques by exploiting such a two-layered network structure to estimate target graph characteristics. Experiments conducted on both synthetic and real-world networks demonstrate the effectiveness and usefulness of these new techniques.