Implications of dark matter cascade decay from DAMPE, HESS, Fermi-LAT and AMS02 data


Abstract in English

Recent high-energy cosmic $e^pm$ measurement from the DArk Matter Particle Explorer (DAMPE) satellite confirms the deviation of total cosmic ray electron spectrum above 700-900 GeV from a simple power law. In this paper we demonstrate that the cascade decay of dark matter (DM) can account for DAMPEs TeV $e^+e^-$ spectrum. We select the least constraint DM decay channel into four muons as the benchmark scenario, and perform an analysis with propagation variance in both DM signal and the Milky Ways electron background. The best-fit of the model is obtained for joint DAMPE, Fermi-Large Area Telescope (Fermi-LAT), High Energy Stereoscopic System (HESS), high energy electron data sets, and with an $mathcal{O}(10^{26})$ second decay lifetime, which is consistent with existing gamma ray and cosmic microwave background limits. We compare the spectral difference between the cascade decay of typical final-state channels. The least constrained $4mu$ channels give good fits to the electron spectrums TeV scale down-turn, yet their low energy spectrum has tension with sub-TeV positron data from AMS02. We also consider a three-step cascade decay into eight muons, and also a gamma-ray constrained $4mu,4b$ mixed channel, to demonstrate that a further softened cascade decay signal would be required for the agreement with all the data sets.

Download