Do you want to publish a course? Click here

On a skewed and multifractal uni-dimensional random field, as a probabilistic representation of Kolmogorovs views on turbulence

93   0   0.0 ( 0 )
 Added by R\\'emi Rhodes
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct, for the first time to our knowledge, a one-dimensional stochastic field ${u(x)}_{xin mathbb{R}}$ which satisfies the following axioms which are at the core of the phenomenology of turbulence mainly due to Kolmogorov: (i) Homogeneity and isotropy: $u(x) overset{mathrm{law}}= -u(x) overset{mathrm{law}}=u(0)$ (ii) Negative skewness (i.e. the $4/5^{mbox{tiny th}}$-law): $mathbb{E}{(u(x+ell)-u(x))^3} sim_{ell to 0+} - C , ell,,$ , for some constant $C>0$ (iii) Intermittency: $mathbb{E}{|u(x+ell)-u(x) |^q} asymp_{ell to 0} |ell|^{xi_q},,$ for some non-linear spectrum $qmapsto xi_q$ Since then, it has been a challenging problem to combine axiom (ii) with axiom (iii) (especially for Hurst indexes of interest in turbulence, namely $H<1/2$). In order to achieve simultaneously both axioms, we disturb with two ingredients a underlying fractional Gaussian field of parameter $Happrox frac 1 3 $. The first ingredient is an independent Gaussian multiplicative chaos (GMC) of parameter $gamma$ that mimics the intermittent, i.e. multifractal, nature of the fluctuations. The second one is a field that correlates in an intricate way the fractional component and the GMC without additional parameters, a necessary inter-dependence in order to reproduce the asymmetrical, i.e. skewed, nature of the probability laws at small scales.

rate research

Read More

Consider an infinite tree with random degrees, i.i.d. over the sites, with a prescribed probability distribution with generating function G(s). We consider the following variation of Renyis parking problem, alternatively called blocking RSA: at every vertex of the tree a particle (or car) arrives with rate one. The particle sticks to the vertex whenever the vertex and all of its nearest neighbors are not occupied yet. We provide an explicit expression for the so-called parking constant in terms of the generating function.
We consider reversible random walks in random environment obtained from symmetric long--range jump rates on a random point process. We prove almost sure transience and recurrence results under suitable assumptions on the point process and the jump rate function. For recurrent models we obtain almost sure estimates on effective resistances in finite boxes. For transient models we construct explicit fluxes with finite energy on the associated electrical network.
For critical bond-percolation on high-dimensional torus, this paper proves sharp lower bounds on the size of the largest cluster, removing a logarithmic correction in the lower bound in Heydenreich and van der Hofstad (2007). This improvement finally settles a conjecture by Aizenman (1997) about the role of boundary conditions in critical high-dimensional percolation, and it is a key step in deriving further properties of critical percolation on the torus. Indeed, a criterion of Nachmias and Peres (2008) implies appropriate bounds on diameter and mixing time of the largest clusters. We further prove that the volume bounds apply also to any finite number of the largest clusters. The main conclusion of the paper is that the behavior of critical percolation on the high-dimensional torus is the same as for critical Erdos-Renyi random graphs. In this updated version we incorporate an erratum to be published in a forthcoming issue of Probab. Theory Relat. Fields. This results in a modification of Theorem 1.2 as well as Proposition 3.1.
The determination of the Hausdorff dimension of the scaling limit of loop-erased random walk is closely related to the study of the one-point function of loop-erased random walk, i.e., the probability a loop-erased random walk passes through a given vertex. Recent work in the theoretical physics literature has investigated the Hausdorff dimension of loop-erased random walk in three dimensions by applying field theory techniques to study spin systems that heuristically encode the one-point function of loop-erased random walk. Inspired by this, we introduce two different spin systems whose correlation functions can be rigorously shown to encode the one-point function of loop-erased random walk.
We characterize the phase space for the infinite volume limit of a ferromagnetic mean-field XY model in a random field pointing in one direction with two symmetric values. We determine the stationary solutions and detect possible phase transitions in the interaction strength for fixed random field intensity. We show that at low temperature magnetic ordering appears perpendicularly to the field. The latter situation corresponds to a spin-flop transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا