Let $mathcal{C}$ be a family of edge-colored graphs. A $t$-edge colored graph $G$ is $(mathcal{C}, t)$-saturated if $G$ does not contain any graph in $mathcal{C}$ but the addition of any edge in any color in $[t]$ creates a copy of some graph in $mathcal{C}$. Similarly to classical saturation functions, define $mathrm{sat}_t(n, mathcal{C})$ to be the minimum number of edges in a $(mathcal{C},t)$ saturated graph. Let $mathcal{C}_r(H)$ be the family consisting of every edge-colored copy of $H$ which uses exactly $r$ colors. In this paper we consider a variety of colored saturation problems. We determine the order of magnitude for $mathrm{sat}_t(n, mathcal{C}_r(K_k))$ for all $r$, showing a sharp change in behavior when $rgeq binom{k-1}{2}+2$. A particular case of this theorem proves a conjecture of Barrus, Ferrara, Vandenbussche, and Wenger. We determine $mathrm{sat}_t(n, mathcal{C}_2(K_3))$ exactly and determine the extremal graphs. Additionally, we document some interesting irregularities in the colored saturation function.