Do you want to publish a course? Click here

A Nakanishi-based model illustrating the covariant extension of the pion GPD overlap representation and its ambiguities

141   0   0.0 ( 0 )
 Added by Nabil Chouika
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

A systematic approach for the model building of Generalized Parton Distributions (GPDs), based on their overlap representation within the DGLAP kinematic region and a further covariant extension to the ERBL one, is applied to the valence-quark pions case, using light-front wave functions inspired by the Nakanishi representation of the pions Bethe-Salpeter amplitudes (BSA). This simple but fruitful pions GPD model illustrates the general model building technique and, in addition, allows for the ambiguities related to the covariant extension, grounded on the Double Distribution (DD) representation, to be constrained by requiring a soft-pion theorem to be properly observed.

rate research

Read More

We present a novel approach to compute Generalized Parton Distributions within the Lightfront Wave Function overlap framework. We show how to systematically extend Generalized Parton Distributions computed within the DGLAP region to the ERBL one, fulfilling at the same time both the polynomiality and positivity conditions. We exemplify our method using pion Lightfront Wave Functions inspired by recent results of non-perturbative continuum techniques and algebraic nucleon Lightfront Wave Functions. We also test the robustness of our algorithm on reggeized phenomenological parameterizations. This approach paves the way to a better understanding of the nucleon structure from non-perturbative techniques and to a unification of Generalized Parton Distributions and Transverse Momentum Dependent Parton Distribution Functions phenomenology through Lightfront Wave Functions.
We briefly report on a recent computation, with the help of a fruitful algebraic model, sketching the pion valence dressed-quark generalized parton distribution and, very preliminary, discuss on a possible avenue to get reliable results in both Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) and Efremov-Radyushkin-Brodsky-Lepage (ERBL) kinematial regions.
We briefly report on a recent computation, with the help of a fruitful algebraic model, sketching the pion valence dressed-quark generalized parton distribution. Then, preliminary, we introduce on a sensible procedure to get reliable results in both Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) and Efremov-Radyushkin-Brodsky-Lepage (ERBL) kinematical regions, grounded on the GPD overlap representation and its parametrization of a Radon transform of the so-called double distribution (DD).
242 - R. D. Bowler , M. C. Birse 1994
We solve a nonlocal generalisation of the NJL model in the Hartree approximation. This model has a separable interaction, as suggested by instanton models of the QCD vacuum. The choice of form factor in this interaction is motivated by the confining nature of the vacuum. A conserved axial current is constructed in the chiral limit of the model and the pion properties are shown to satisfy the Gell-Mann--Oakes--Renner relation. For reasonable values of the parameters the model exhibits quark confinement.
The structure of the pion wave function in the relativistic constituent quark model is investigated in the explicitly covariant formulation of light-front dynamics. We calculate the two relativistic components of the pion wave function in a simple one-gluon exchange model and investigate various physical observables: decay constant, charge radius, electromagnetic and transition form factors. We discuss the influence of the full relativistic structure of the pion wave function for an overall good description of all these observables, including both low and high momentum scales.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا