Do you want to publish a course? Click here

A Monte Carlo method for estimating sensitivities of reflected diffusions in convex polyhedral domains

63   0   0.0 ( 0 )
 Added by David Lipshutz
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

In this work we develop an effective Monte Carlo method for estimating sensitivities, or gradients of expectations of sufficiently smooth functionals, of a reflected diffusion in a convex polyhedral domain with respect to its defining parameters --- namely, its initial condition, drift and diffusion coefficients, and directions of reflection. Our method, which falls into the class of infinitesimal perturbation analysis (IPA) methods, uses a probabilistic representation for such sensitivities as the expectation of a functional of the reflected diffusion and its associated derivative process. The latter process is the unique solution to a constrained linear stochastic differential equation with jumps whose coefficients, domain and directions of reflection are modulated by the reflected diffusion. We propose an asymptotically unbiased estimator for such sensitivities using an Euler approximation of the reflected diffusion and its associated derivative process. Proving that the Euler approximation converges is challenging because the derivative process jumps whenever the reflected diffusion hits the boundary (of the domain). A key step in the proof is establishing a continuity property of the related derivative map, which is of independent interest. We compare the performance of our IPA estimator to a standard likelihood ratio estimator (whenever the latter is applicable), and provide numerical evidence that the variance of the former is substantially smaller than that of the latter. We illustrate our method with an example of a rank-based interacting diffusion model of equity markets. Interestingly, we show that estimating certain sensitivities of the rank-based interacting diffusion model using our method for a reflected Brownian motion description of the model outperforms a finite difference method for a stochastic differential equation description of the model.



rate research

Read More

Reflected diffusions in convex polyhedral domains arise in a variety of applications, including interacting particle systems, queueing networks, biochemical reaction networks and mathematical finance. Under suitable conditions on the data, we establish pathwise differentiability of such a reflected diffusion with respect to its defining parameters --- namely, its initial condition, drift and diffusion coefficients, and (oblique) directions of reflection along the boundary of the domain. We characterize the right-continuous regularization of a pathwise derivative of the reflected diffusion as the pathwise unique solution to a constrained linear stochastic differential equation with jumps whose drift and diffusion coefficients, domain and directions of reflection depend on the state of the reflected diffusion. The proof of this result relies on properties of directional derivatives of the associated (extended) Skorokhod reflection map and their characterization in terms of a so-called derivative problem, and also involves establishing certain path properties of the reflected diffusion at nonsmooth parts of the boundary of the polyhedral domain, which may be of independent interest. As a corollary, we obtain a probabilistic representation for derivatives of expectations of functionals of reflected diffusions, which is useful for sensitivity analysis of reflected diffusions.
Reflected Brownian motion (RBM) in a convex polyhedral cone arises in a variety of applications ranging from the theory of stochastic networks to math finance, and under general stability conditions, it has a unique stationary distribution. In such applications, to implement a stochastic optimization algorithm or quantify robustness of a model, it is useful to characterize the dependence of stationary performance measures on model parameters. In this work we characterize parametric sensitivities of the stationary distribution of an RBM in a simple convex polyhedral cone; that is, sensitivities to perturbations of the parameters that define the RBM --- namely, the covariance matrix, drift vector and directions of reflection along the boundary of the polyhedral cone. In order to characterize these sensitivities we study the long time behavior of the joint process consisting of an RBM along with its so-called derivative process, which characterizes pathwise derivatives of RBMs on finite time intervals. We show that the joint process is positive recurrent, has a unique stationary distribution, and parametric sensitivities of the stationary distribution of an RBM can be expressed in terms of the stationary distribution of the joint process. This can be thought of as establishing an interchange of the differential operator and the limit in time. The analysis of ergodicity of the joint process is significantly more complicated than that of the RBM due to its degeneracy and the fact that the derivative process exhibits jumps that are modulated by the RBM. The proofs of our results rely on path properties of coupled RBMs and contraction properties related to the geometry of the polyhedral cone and directions of reflection along the boundary. Our results are potentially useful for developing efficient numerical algorithms for computing sensitivities of functionals of stationary RBMs.
Two frameworks that have been used to characterize reflected diffusions include stochastic differential equations with reflection and the so-called submartingale problem. We introduce a general formulation of the submartingale problem for (obliquely) reflected diffusions in domains with piecewise C^2 boundaries and piecewise continuous reflection vector fields. Under suitable assumptions, we show that well-posedness of the submartingale problem is equivalent to existence and uniqueness in law of weak solutions to the corresponding stochastic differential equation with reflection. Our result generalizes to the case of reflecting diffusions a classical result due to Stroock and Varadhan on the equivalence of well-posedness of martingale problems and well-posedness of weak solutions of stochastic differential equations in d-dimensional Euclidean space. The analysis in the case of reflected diffusions in domains with non-smooth boundaries is considerably more subtle and requires a careful analysis of the behavior of the reflected diffusion on the boundary of the domain. In particular, the equivalence can fail to hold when our assumptions are not satisfied. The equivalence we establish allows one to transfer results on reflected diffusions characterized by one approach to reflected diffusions analyzed by the other approach. As an application, we provide a characterization of stationary distributions of a large class of reflected diffusions in convex polyhedral domains.
Given a domain G, a reflection vector field d(.) on the boundary of G, and drift and dispersion coefficients b(.) and sigma(.), let L be the usual second-order elliptic operator associated with b(.) and sigma(.). Under suitable assumptions that, in particular, ensure that the associated submartingale problem is well posed, it is shown that a probability measure $pi$ on bar{G} is a stationary distribution for the corresponding reflected diffusion if and only if $pi (partial G) = 0$ and $int_{bar{G}} L f (x) pi (dx) leq 0$ for every f in a certain class of test functions. Moreover, the assumptions are shown to be satisfied by a large class of reflected diffusions in piecewise smooth multi-dimensional domains with possibly oblique reflection.
68 - T. R. Cass , P. K. Friz 2006
We extend the Bismut-Elworthy-Li formula to non-degenerate jump diffusions and payoff functions depending on the process at multiple future times. In the spirit of Fournie et al [13] and Davis and Johansson [9] this can improve Monte Carlo numerics for stochastic volatility models with jumps. To this end one needs so-called Malliavin weights and we give explicit formulae valid in presence of jumps: (a) In a non-degenerate situation, the extended BEL formula represents possible Malliavin weights as Ito integrals with explicit integrands; (b) in a hypoelliptic setting we review work of Arnaudon and Thalmaier [1] and also find explicit weights, now involving the Malliavin covariance matrix, but still straight-forward to implement. (This is in contrast to recent work by Forster, Lutkebohmert and Teichmann where weights are constructed as anticipating Skorohod integrals.) We give some financial examples covered by (b) but note that most practical cases of poor Monte Carlo performance, Digital Cliquet contracts for instance, can be dealt with by the extended BEL formula and hence without any reliance on Malliavin calculus at all. We then discuss some of the approximations, often ignored in the literature, needed to justify the use of the Malliavin weights in the context of standard jump diffusion models. Finally, as all this is meant to improve numerics, we give some numerical results with focus on Cliquets under the Heston model with jumps.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا