No Arabic abstract
Employing part-level features for pedestrian image description offers fine-grained information and has been verified as beneficial for person retrieval in very recent literature. A prerequisite of part discovery is that each part should be well located. Instead of using external cues, e.g., pose estimation, to directly locate parts, this paper lays emphasis on the content consistency within each part. Specifically, we target at learning discriminative part-informed features for person retrieval and make two contributions. (i) A network named Part-based Convolutional Baseline (PCB). Given an image input, it outputs a convolutional descriptor consisting of several part-level features. With a uniform partition strategy, PCB achieves competitive results with the state-of-the-art methods, proving itself as a strong convolutional baseline for person retrieval. (ii) A refined part pooling (RPP) method. Uniform partition inevitably incurs outliers in each part, which are in fact more similar to other parts. RPP re-assigns these outliers to the parts they are closest to, resulting in refined parts with enhanced within-part consistency. Experiment confirms that RPP allows PCB to gain another round of performance boost. For instance, on the Market-1501 dataset, we achieve (77.4+4.2)% mAP and (92.3+1.5)% rank-1 accuracy, surpassing the state of the art by a large margin.
Fashion retrieval is the challenging task of finding an exact match for fashion items contained within an image. Difficulties arise from the fine-grained nature of clothing items, very large intra-class and inter-class variance. Additionally, query and source images for the task usually come from different domains - street photos and catalogue photos respectively. Due to these differences, a significant gap in quality, lighting, contrast, background clutter and item presentation exists between domains. As a result, fashion retrieval is an active field of research both in academia and the industry. Inspired by recent advancements in Person Re-Identification research, we adapt leading ReID models to be used in fashion retrieval tasks. We introduce a simple baseline model for fashion retrieval, significantly outperforming previous state-of-the-art results despite a much simpler architecture. We conduct in-depth experiments on Street2Shop and DeepFashion datasets and validate our results. Finally, we propose a cross-domain (cross-dataset) evaluation method to test the robustness of fashion retrieval models.
Occluded person re-identification (Re-ID) is a challenging task as persons are frequently occluded by various obstacles or other persons, especially in the crowd scenario. To address these issues, we propose a novel end-to-end Part-Aware Transformer (PAT) for occluded person Re-ID through diverse part discovery via a transformer encoderdecoder architecture, including a pixel context based transformer encoder and a part prototype based transformer decoder. The proposed PAT model enjoys several merits. First, to the best of our knowledge, this is the first work to exploit the transformer encoder-decoder architecture for occluded person Re-ID in a unified deep model. Second, to learn part prototypes well with only identity labels, we design two effective mechanisms including part diversity and part discriminability. Consequently, we can achieve diverse part discovery for occluded person Re-ID in a weakly supervised manner. Extensive experimental results on six challenging benchmarks for three tasks (occluded, partial and holistic Re-ID) demonstrate that our proposed PAT performs favorably against stat-of-the-art methods.
Vehicle instance retrieval often requires one to recognize the fine-grained visual differences between vehicles. Besides the holistic appearance of vehicles which is easily affected by the viewpoint variation and distortion, vehicle parts also provide crucial cues to differentiate near-identical vehicles. Motivated by these observations, we introduce a Part-Guided Attention Network (PGAN) to pinpoint the prominent part regions and effectively combine the global and part information for discriminative feature learning. PGAN first detects the locations of different part components and salient regions regardless of the vehicle identity, which serve as the bottom-up attention to narrow down the possible searching regions. To estimate the importance of detected parts, we propose a Part Attention Module (PAM) to adaptively locate the most discriminative regions with high-attention weights and suppress the distraction of irrelevant parts with relatively low weights. The PAM is guided by the instance retrieval loss and therefore provides top-down attention that enables attention to be calculated at the level of car parts and other salient regions. Finally, we aggregate the global appearance and part features to improve the feature performance further. The PGAN combines part-guided bottom-up and top-down attention, global and part visual features in an end-to-end framework. Extensive experiments demonstrate that the proposed method achieves new state-of-the-art vehicle instance retrieval performance on four large-scale benchmark datasets.
Occluded person re-identification is a challenging task as the appearance varies substantially with various obstacles, especially in the crowd scenario. To address this issue, we propose a Pose-guided Visible Part Matching (PVPM) method that jointly learns the discriminative features with pose-guided attention and self-mines the part visibility in an end-to-end framework. Specifically, the proposed PVPM includes two key components: 1) pose-guided attention (PGA) method for part feature pooling that exploits more discriminative local features; 2) pose-guided visibility predictor (PVP) that estimates whether a part suffers the occlusion or not. As there are no ground truth training annotations for the occluded part, we turn to utilize the characteristic of part correspondence in positive pairs and self-mining the correspondence scores via graph matching. The generated correspondence scores are then utilized as pseudo-labels for visibility predictor (PVP). Experimental results on three reported occluded benchmarks show that the proposed method achieves competitive performance to state-of-the-art methods. The source codes are available at https://github.com/hh23333/PVPM
Important high-level vision tasks such as human-object interaction, image captioning and robotic manipulation require rich semantic descriptions of objects at part level. Based upon previous work on part localization, in this paper, we address the problem of inferring rich semantics imparted by an object part in still images. We propose to tokenize the semantic space as a discrete set of part states. Our modeling of part state is spatially localized, therefore, we formulate the part state inference problem as a pixel-wise annotation problem. An iterative part-state inference neural network is specifically designed for this task, which is efficient in time and accurate in performance. Extensive experiments demonstrate that the proposed method can effectively predict the semantic states of parts and simultaneously correct localization errors, thus benefiting a few visual understanding applications. The other contribution of this paper is our part state dataset which contains rich part-level semantic annotations.