No Arabic abstract
Two network measures known as the Economic Complexity Index (ECI) and Product Complexity Index (PCI) have provided important insights into patterns of economic development. We show that the ECI and PCI are equivalent to a spectral clustering algorithm that partitions a similarity graph into two parts. The measures are also related to various dimensionality reduction methods and can be interpreted as vectors that determine distances between nodes based on their similarity. Our results shed a new light on the ECIs empirical success in explaining cross-country differences in GDP/capita and economic growth, which is often linked to the diversity of country export baskets. In fact, countries with high (low) ECI tend to specialize in high (low) PCI products. We also find that the ECI and PCI uncover economically informative specialization patterns across US states and UK regions.
Evaluating the economies of countries and their relations with products in the global market is a central problem in economics, with far-reaching implications to our theoretical understanding of the international trade as well as to practical applications, such as policy making and financial investment planning. The recent Economic Complexity approach aims to quantify the competitiveness of countries and the quality of the exported products based on the empirical observation that the most competitive countries have diversified exports, whereas developing countries only export few low quality products -- typically those exported by many other countries. Two different metrics, Fitness-Complexity and the Method of Reflections, have been proposed to measure country and product score in the Economic Complexity framework. We use international trade data and a recent ranking evaluation measure to quantitatively compare the ability of the two metrics to rank countries and products according to their importance in the network. The results show that the Fitness-Complexity metric outperforms the Method of Reflections in both the ranking of products and the ranking of countries. We also investigate a Generalization of the Fitness-Complexity metric and show that it can produce improved rankings provided that the input data are reliable.
The Economic Complexity Index (ECI; Hidalgo & Hausmann, 2009) measures the complexity of national economies in terms of product groups. Analogously to ECI, a Patent Complexity Index (PatCI) can be developed on the basis of a matrix of nations versus patent classes. Using linear algebra, the three dimensions: countries, product groups, and patent classes can be combined into a measure of Triple Helix complexity (THCI) including the trilateral interaction terms between knowledge production, wealth generation, and (national) control. THCI can be expected to capture the extent of systems integration between the global dynamics of markets (ECI) and technologies (PatCI) in each national system of innovation. We measure ECI, PatCI, and THCI during the period 2000-2014 for the 34 OECD member states, the BRICS countries, and a group of emerging and affiliated economies (Argentina, Hong Kong, Indonesia, Malaysia, Romania, and Singapore). The three complexity indicators are correlated between themselves; but the correlations with GDP per capita are virtually absent. Of the worlds major economies, Japan scores highest on all three indicators, while China has been increasingly successful in combining economic and technological complexity. We could not reproduce the correlation between ECI and average income that has been central to the argument about the fruitfulness of the economic complexity approach.
Industrial development is the process by which economies learn how to produce new products and services. But how do economies learn? And who do they learn from? The literature on economic geography and economic development has emphasized two learning channels: inter-industry learning, which involves learning from related industries; and inter-regional learning, which involves learning from neighboring regions. Here we use 25 years of data describing the evolution of Chinas economy between 1990 and 2015--a period when China multiplied its GDP per capita by a factor of ten--to explore how Chinese provinces diversified their economies. First, we show that the probability that a province will develop a new industry increases with the number of related industries that are already present in that province, a fact that is suggestive of inter-industry learning. Also, we show that the probability that a province will develop an industry increases with the number of neighboring provinces that are developed in that industry, a fact suggestive of inter-regional learning. Moreover, we find that the combination of these two channels exhibit diminishing returns, meaning that the contribution of either of these learning channels is redundant when the other one is present. Finally, we address endogeneity concerns by using the introduction of high-speed rail as an instrument to isolate the effects of inter-regional learning. Our differences-in-differences (DID) analysis reveals that the introduction of high speed-rail increased the industrial similarity of pairs of provinces connected by high-speed rail. Also, industries in provinces that were connected by rail increased their productivity when they were connected by rail to other provinces where that industry was already present. These findings suggest that inter-regional and inter-industry learning played a role in Chinas great economic expansion.
Urbanization plays a crucial role in the economic development of every country. The mutual relationship between the urbanization of any country and its economic productive structure is far from being understood. We analyzed the historical evolution of product exports for all countries using the World Trade Web (WTW) with respect to patterns of urbanization from 1995-2010. Using the evolving framework of economic complexity, we reveal that a countrys economic development in terms of its production and export of goods, is interwoven with the urbanization process during the early stages of its economic development and growth. Meanwhile in urbanized countries, the reciprocal relation between economic growth and urbanization fades away with respect to its later stages, becoming negligible for countries highly dependent on the export of resources where urbanization is not linked to any structural economic transformation.
Every nation prioritizes the inclusive economic growth and development of all regions. However, we observe that economic activities are clustered in space, which results in a disparity in per-capita income among different regions. A complexity-based method was proposed by Hidalgo and Hausmann [PNAS 106, 10570-10575 (2009)] to explain the large gaps in per-capita income across countries. Although there have been extensive studies on countries economic complexity using international export data, studies on economic complexity at the regional level are relatively less studied. Here, we study the industrial sector complexity of prefectures in Japan based on the basic information of more than one million firms. We aggregate the data as a bipartite network of prefectures and industrial sectors. We decompose the bipartite network as a prefecture-prefecture network and sector-sector network, which reveals the relationships among them. Similarities among the prefectures and among the sectors are measured using a metric. From these similarity matrices, we cluster the prefectures and sectors using the minimal spanning tree technique.The computed economic complexity index from the structure of the bipartite network shows a high correlation with macroeconomic indicators, such as per-capita gross prefectural product and prefectural income per person. We argue that this index reflects the present economic performance and hidden potential of the prefectures for future growth.