No Arabic abstract
We analyze a modified Bose-Hubbard model, where two cavities having on-site Kerr interactions are subject to two-photon driving and correlated dissipation. We derive an exact solution for the steady state of this interacting driven-dissipative system, and use it show that the system permits the preparation and stabilization of pure entangled non-Gaussian states, so-called entangled cat states. Unlike previous proposals for dissipative stabilization of such states, our approach requires only a linear coupling to a single engineered reservoir (as opposed to nonlinear couplings to two or more reservoirs). Our scheme is within the reach of state-of-the-art experiments in circuit QED.
We theoretically explore quantum correlation properties of a dissipative Bose-Hubbard dimer in presence of a coherent drive. In particular, we focus on the regime where the semiclassical theory predicts a bifurcation with a spontaneous spatial symmetry breaking. The critical behavior in a well defined thermodynamical limit of large excitation numbers is considered and analyzed within a Gaussian approach. The case of a finite boson density is also examined by numerically integrating the Lindblad master equation for the density matrix. We predict the critical behavior around the bifurcation points accompanied with large quantum correlations of the mixed steady-state, in particular exhibiting a peak in the logarithmic entanglement negativity.
Open quantum systems evolving according to discrete-time dynamics are capable, unlike continuous-time counterparts, to converge to a stable equilibrium in finite time with zero error. We consider dissipative quantum circuits consisting of sequences of quantum channels subject to specified quasi-locality constraints, and determine conditions under which stabilization of a pure multipartite entangled state of interest may be exactly achieved in finite time. Special emphasis is devoted to characterizing scenarios where finite-time stabilization may be achieved robustly with respect to the order of the applied quantum maps, as suitable for unsupervised control architectures. We show that if a decomposition of the physical Hilbert space into virtual subsystems is found, which is compatible with the locality constraint and relative to which the target state factorizes, then robust stabilization may be achieved by independently cooling each component. We further show that if the same condition holds for a scalable class of pure states, a continuous-time quasi-local Markov semigroup ensuring rapid mixing can be obtained. Somewhat surprisingly, we find that the commutativity of the canonical parent Hamiltonian one may associate to the target state does not directly relate to its finite-time stabilizability properties, although in all cases where we can guarantee robust stabilization, a (possibly non-canonical) commuting parent Hamiltonian may be found. Beside graph states, quantum states amenable to finite-time robust stabilization include a class of universal resource states displaying two-dimensional symmetry-protected topological order, along with tensor network states obtained by generalizing a construction due to Bravyi and Vyalyi. Extensions to representative classes of mixed graph-product and thermal states are also discussed.
In the large-$N$, classical limit, the Bose-Hubbard dimer undergoes a transition to chaos when its tunnelling rate is modulated in time. We use exact and approximate numerical simulations to determine the features of the dynamically evolving state that are correlated with the presence of chaos in the classical limit. We propose the statistical distance between initially similar number distributions as a reliable measure to distinguish regular from chaotic behaviour in the quantum dynamics. Besides being experimentally accessible, number distributions can be efficiently reconstructed numerically from binned phase-space trajectories in a truncated Wigner approximation. Although the evolving Wigner function becomes very irregular in the chaotic regions, the truncated Wigner method is nevertheless able to capture accurately the beyond mean-field dynamics.
For a Bose-Hubbard dimer, we study quenches of the site energy imbalance, taking a highly asymmetric Hamiltonian to a fully symmetric one. The ramp is carried out over a finite time that interpolates between the instantaneous and adiabatic limits. We provide results for the excess energy of the final state compared to the ground state energy of the final Hamiltonian, as a function of the quench rate. This excess energy serves as the analog of the defect density that is considered in the Kibble-Zurek picture of ramps across phase transitions. We also examine the fate of quantum `self-trapping when the ramp is not instantaneous.
In continuous-variable quantum information, non-Gaussian entangled states that are obtained from Gaussian entangled states via photon subtraction are known to contain more entanglement. This makes them better resources for quantum information processing protocols, such as, quantum teleportation. We discuss the teleportation of non-Gaussian, non-classical Schrodinger-cat states of light using two-mode squeezed vacuum light that is made non-Gaussian via subtraction of a photon from each of the two modes. We consider the experimentally realizable cat states produced by subtracting a photon from the single-mode squeezed vacuum state. We discuss two figures of merit for the teleportation process, a) the fidelity, and b) the maximum negativity of the Wigner function at the output. We elucidate how the non-Gaussian entangled resource lowers the requirements on the amount of squeezing necessary to achieve any given fidelity of teleportation, or to achieve negative values of the Wigner function at the output.