No Arabic abstract
We perform direct numerical simulations (DNS) of passive heavy inertial particles (dust) in homogeneous and isotropic two-dimensional turbulent flows (gas) for a range of Stokes number, ${rm St} < 1$, using both Lagrangian and Eulerian approach (with a shock-capturing scheme). We find that: The dust-density field in our Eulerian simulations have the same correlation dimension $d_2$ as obtained from the clustering of particles in the Lagrangian simulations for ${rm St} < 1$; The cumulative probability distribution function of the dust-density coarse-grained over a scale $r$ in the inertial range has a left-tail with a power-law fall-off indicating presence of voids; The energy spectrum of the dust-velocity has a power-law range with an exponent that is same as the gas-velocity spectrum except at very high Fourier modes; The compressibility of the dust-velocity field is proportional to ${rm St}^2$. We quantify the topological properties of the dust-velocity and the gas-velocity through their gradient matrices, called $mathcal{A}$ and $mathcal{B}$, respectively. The topological properties of $mathcal{B}$ are the same in Eulerian and Lagrangian frames only if the Eulerian data are weighed by the dust-density -- a correspondence that we use to study Lagrangian properties of $mathcal{A}$. In the Lagrangian frame, the mean value of the trace of $mathcal{A} sim - exp(-C/{rm St}$, with a constant $Capprox 0.1$. The topology of the dust-velocity fields shows that as ${rm St} increases the contribution to negative divergence comes mostly from saddles and the contribution to positive divergence comes from both vortices and saddles. Compared to the Eulerian case, the density-weighed Eulerian case has less inward spirals and more converging saddles. Outward spirals are the least probable topological structures in both cases.
We use momentum transfer arguments to predict the friction factor $f$ in two-dimensional turbulent soap-film flows with rough boundaries (an analogue of three-dimensional pipe flow) as a function of Reynolds number Re and roughness $r$, considering separately the inverse energy cascade and the forward enstrophy cascade. At intermediate Re, we predict a Blasius-like friction factor scaling of $fproptotextrm{Re}^{-1/2}$ in flows dominated by the enstrophy cascade, distinct from the energy cascade scaling of $textrm{Re}^{-1/4}$. For large Re, $f sim r$ in the enstrophy-dominated case. We use conformal map techniques to perform direct numerical simulations that are in satisfactory agreement with theory, and exhibit data collapse scaling of roughness-induced criticality, previously shown to arise in the 3D pipe data of Nikuradse.
Parameter extension simulation (PES) as a mathematical method for simulating turbulent flows has been proposed in the study. It is defined as a calculation of the turbulent flow for the desired parameter values with the help of a reference solution. A typical PES calculation is composed of three consecutive steps: Set up the asymptotic relationship between the desired solution and the reference solution; Calculate the reference solution and the necessary asymptotic coefficients; Extend the reference solution to the desired parameter values. A controlled eddy simulation (CES) method has been developed to calculate the reference solution and the asymptotic coefficients. The CES method is a special type of large eddy simulation (LES) method in which a weight coefficient and an artificial force distribution are used to model part of the turbulent motions. The artificial force distribution is modeled based on the eddy viscosity assumption. The reference weight coefficient and the asymptotic coefficients can be determined through a weight coefficient convergence study. The proposed PES/CES method has been used to simulate four types of turbulent flows. They are decaying homogeneous and isotropic turbulence, smooth wall channel flows, rough wall channel flows, and compressor blade cascade flows. The numerical results show that the 0-order PES solution (or the reference CES solution) has a similar accuracy as a traditional LES solution, while its computational cost is much lower. A higher order PES method has an even higher model accuracy.
Phoresis, the drift of particles induced by scalar gradients in a flow, can result in an effective compressibility, bringing together or repelling particles from each other. Here, we ask whether this effect can affect the transport of particles in a turbulent flow. To this end, we study how the dispersion of a cloud of phoretic particles is modified when injected in the flow, together with a blob of scalar, whose effect is to transiently bring particles together, or push them away from the center of the blob. The resulting phoretic effect can be quantified by a single dimensionless number. Phenomenological considerations lead to simple predictions for the mean separation between particles, which are consistent with results of direct numerical simulations. Using the numerical results presented here, as well as those from previous studies, we discuss quantitatively the experimental consequences of this work and the possible impact of such phoretic mechanisms in natural systems.
Helicity, as one of only two inviscid invariants in three-dimensional turbulence, plays an important role in the generation and evolution of turbulence. From the traditional viewpoint, there exists only one channel of helicity cascade similar to that of kinetic energy cascade. Through theoretical analysis, we find that there are two channels in helicity cascade process. The first channel mainly originates from vortex twisting process, and the second channel mainly originates from vortex stretching process. By analysing the data of direct numerical simulations of typical turbulent flows, we find that these two channels behave differently. The ensemble averages of helicity flux in different channels are equal in homogeneous and isotropic turbulence, while they are different in other type of turbulent flows. The second channel is more intermittent and acts more like a scalar, especially on small scales. Besides, we find a novel mechanism of hindered even inverse energy cascade, which could be attributed to the second-channel helicity flux with large amplitude.
The long time dynamics of large particles trapped in two inhomogeneous turbulent shear flows is studied experimentally. Both flows present a common feature, a shear region that separates two colliding circulations, but with different spatial symmetries and temporal behaviors. Because large particles are less and less sensitive to flow fluctuations as their size increases, we observe the emergence of a slow dynamics corresponding to back-and-forth motions between two attractors, and a super-slow regime synchronized with flow reversals when they exist. Such dynamics is substantially reproduced by a one dimensional stochastic model of an over-damped particle trapped in a two-well potential, forced by a colored noise. An extended model is also proposed that reproduces observed dynamics and trapping without potential barrier: the key ingredient is the ratio between the time scales of the noise correlation and the particle dynamics. A total agreement with experiments requires the introduction of spatially inhomogeneous fluctuations and a suited confinement strength.