Do you want to publish a course? Click here

GW170817: Joint Constraint on the Neutron Star Equation of State from Multimessenger Observations

132   0   0.0 ( 0 )
 Added by David Radice
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gravitational waves detected from the binary neutron star (NS) merger GW170817 constrained the NS equation of state by placing an upper bound on certain parameters describing the binarys tidal interactions. We show that the interpretation of the UV/optical/infrared counterpart of GW170817 with kilonova models, combined with new numerical relativity results, imply a complementary lower bound on the tidal deformability parameter. The joint constraints tentatively rule out both extremely stiff and soft NS equations of state.



rate research

Read More

109 - Carolyn A. Raithel 2019
The first detection of gravitational waves from a neutron star-neutron star merger, GW170817, has opened up a new avenue for constraining the ultradense-matter equation of state (EOS). The deviation of the observed waveform from a point-particle waveform is a sensitive probe of the EOS controlling the merging neutron stars structure. In this topical review, I discuss the various constraints that have been made on the EOS in the year following the discovery of GW170817. In particular, I review the surprising relationship that has emerged between the effective tidal deformability of the binary system and the neutron star radius. I also report new results that make use of this relationship, finding that the radius inferred from GW170817 lies between 9.8 and 13.2 km at 90% confidence, with distinct likelihood peaks at 10.8 and 12.3 km. I compare these radii, as well as those inferred in the literature, to X-ray measurements of the neutron star radius. I also summarize the various maximum mass constraints, which point towards a maximum mass < 2.3 M_sun, depending on the fate of the remnant, and which can be used to additionally constrain the high-density EOS. I review the constraints on the EOS that have been performed directly, through Bayesian inference schemes. Finally, I comment on the importance of disentangling thermal effects in future EOS constraints from neutron star mergers.
The equation of state (EoS) of the neutron star (NS) matter remains an enigma. In this work we perform the Bayesian parameter inference with the gravitational wave data (GW170817) and mass-radius observations of some NSs (PSR J0030+0451, PSR J0437-4715, and 4U 1702-429) using the phenomenologically constructed EoS models to search for a potential first-order phase transition. Our phenomenological EoS models take the advantages of current widely used parametrizing methods, which are flexible enough to resemble various theoretical EoS models. We find that the current observation data are still not informative enough to support/rule out phase transition, due to the comparable evidences for models with and without phase transition. However, the bulk properties of the canonical $1.4,M_odot$ NS and the pressure at around $2rho_{rm sat}$ are well constrained by the data, where $rho_{rm sat}$ is the nuclear saturation density. Moreover, strong phase transition at low densities is disfavored, and the $1sigma$ lower bound of transition density is constrained to $1.84rho_{rm sat}$.
As revealed recently by the modeling of the multi-wavelength data of the emission following GW170817/GRB 170817A, there was an off-axis energetic relativistic outflow component launched by this historic double neutron star merger event. In this work we use the results of these modeling to examine the energy extraction process of the central engine. We show that the magnetic process (i.e., the Blandford-Znajek mechanism) is favored, while the neutrino process usually requires a too massive accretion disk if the duration of the central engine activity is comparable to the observed $T_{90}$ of GRB 170817A, unless the timescale of the central engine activity is less than $sim$ 0.2s. We propose that the GRB observations are helpful to constrain the combined tidal parameter $tilde{Lambda}$, and by adopting the accretion disk mass distribution estimated in BZ mechanism, the $90%$ credible interval of $tilde{Lambda}$ for the progenitor of GW170817 is inferred as $309-954$.
The increasing number and precision of measurements of neutron star masses, radii, and, in the near future, moments of inertia offer the possibility of precisely determining the neutron star equation of state. One way to facilitate the mapping of observables to the equation of state is through a parametrization of the latter. We present here a generic method for optimizing the parametrization of any physically allowed EoS. We use mock equations of state that incorporate physically diverse and extreme behavior to test how well our parametrization reproduces the global properties of the stars, by minimizing the errors in the observables mass, radius, and the moment of inertia. We find that using piecewise polytropes and sampling the EoS with five fiducial densities between ~1-8 times the nuclear saturation density results in optimal errors for the smallest number of parameters. Specifically, it recreates the radii of the assumed EoS to within less than 0.5 km for the extreme mock equations of state and to within less than 0.12 km for 95% of a sample of 42 proposed, physically-motivated equations of state. Such a parametrization is also able to reproduce the maximum mass to within 0.04 M_sun and the moment of inertia of a 1.338 M_sun neutron star to within less than 10% for 95% of the proposed sample of equations of state.
Gravitational waves (GWs) from inspiralling neutron stars afford us a unique opportunity to infer the as-of-yet unknown equation of state of cold hadronic matter at supranuclear densities. The dominant matter effects are due to the stars response to their companions tidal field, leaving a characteristic imprint in the emitted GW signal. This unique signature allows us to constrain the neutron star equation of state. At GW frequencies above $gtrsim 800$Hz, however, subdominant tidal effects known as dynamical tides become important. In this letter, we demonstrate that neglecting dynamical tidal effects associated with the fundamental ($f$-) mode leads to large systematic biases in the measured tidal deformability of the stars and hence in the inferred neutron star equation of state. Importantly, we find that $f$-mode dynamical tides will already be relevant for Advanced LIGOs and Virgos fifth observing run ($sim 2025$) -- neglecting dynamical tides can lead to errors on the neutron radius of $mathcal{O}(1{rm km})$, with dramatic implications for the measurement of the equation of state. Our results demonstrate that the accurate modelling of subdominant tidal effects beyond the adiabatic limit will be crucial to perform accurate measurements of the neutron star equation of state in upcoming GW observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا