Do you want to publish a course? Click here

The Regionally-Implicit Discontinuous Galerkin Method: Improving the Stability of DG-FEM

93   0   0.0 ( 0 )
 Added by James Rossmanith
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Discontinuous Galerkin (DG) methods for hyperbolic partial differential equations (PDEs) with explicit time-stepping schemes, such as strong stability-preserving Runge-Kutta (SSP-RK), suffer from time-step restrictions that are significantly worse than what a simple Courant-Friedrichs-Lewy (CFL) argument requires. In particular, the maximum stable time-step scales inversely with the highest degree in the DG polynomial approximation space and becomes progressively smaller with each added spatial dimension. In this work we introduce a novel approach that we have dubbed the regionally implicit discontinuous Galerkin (RIDG) method to overcome these small time-step restrictions. The RIDG method is based on an extension of the Lax-Wendroff DG (LxW-DG) method, which previously had been shown to be equivalent to a predictor-corrector approach, where the predictor is a locally implicit spacetime method (i.e., the predictor is something like a block-Jacobi update for a fully implicit spacetime DG method). The corrector is an explicit method that uses the spacetime reconstructed solution from the predictor step. In this work we modify the predictor to include not just local information, but also neighboring information. With this modification we show that the stability is greatly enhanced; in particular, we show that we are able to remove the polynomial degree dependence of the maximum time-step and show how this extends to multiple spatial dimensions. A semi-analytic von Neumann analysis is presented to theoretically justify the stability claims. Convergence and efficiency studies for linear and nonlinear problems in multiple dimensions are accomplished using a MATLAB code that can be freely downloaded.



rate research

Read More

In this work we investigate the parallel scalability of the numerical method developed in Guthrey and Rossmanith [The regionally implicit discontinuous Galerkin method: Improving the stability of DG-FEM, SIAM J. Numer. Anal. (2019)]. We develop an implementation of the regionally-implicit discontinuous Galerkin (RIDG) method in DoGPack, which is an open source C++ software package for discontinuous Galerkin methods. Specifically, we develop and test a hybrid OpenMP and MPI parallelized implementation of DoGPack with the goal of exploring the efficiency and scalability of RIDG in comparison to the popular strong stability-preserving Runge-Kutta discontinuous Galerkin (SSP-RKDG) method. We demonstrate that RIDG methods are able to hide communication latency associated with distributed memory parallelism, due to the fact that almost all of the work involved in the method is highly localized to each element, producing a localized prediction for each region. We demonstrate the enhanced efficiency and scalability of the of the RIDG method and compare it to SSP-RKDG methods and show extensibility to very high order schemes. The two-dimensional scaling study is performed on machines at the Institute for Cyber-Enabled Research at Michigan State University, using up to 1440 total cores on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz CPUs. The three dimensional scaling study is performed on Livermore Computing clusters at at Lawrence Livermore National Laboratory, using up to 28672 total cores on Intel Xeon CLX-8276L CPUs with Omni-Path interconnects.
We consider semi-discrete discontinuous Galerkin approximations of a general elastodynamics problem, in both {it displacement} and {it displacement-stress} formulations. We present the stability analysis of all the methods in the natural energy norm and derive optimal a-priori error estimates. For the displacement-stress formulation, schemes preserving the total energy of the system are introduced and discussed. We include some numerical experiments in three dimensions to verify the theory.
The high-order hybridizable discontinuous Galerkin (HDG) method combining with an implicit iterative scheme is used to find the steady-state solution of the Boltzmann equation with full collision integral on two-dimensional triangular meshes. The velocity distribution function and its trace are approximated in the piecewise polynomial space of degree up to 4. The fast spectral method (FSM) is incorporated into the DG discretization to evaluate the collision operator. Specific polynomial approximation is proposed for the collision term to reduce the computational cost. The proposed scheme is proved to be accurate and efficient.
We propose and analyze novel adaptive algorithms for the numerical solution of elliptic partial differential equations with parametric uncertainty. Four different marking strategies are employed for refinement of stochastic Galerkin finite element approximations. The algorithms are driven by the energy error reduction estimates derived from two-level a posteriori error indicators for spatial approximations and hierarchical a posteriori error indicators for parametric approximations. The focus of this work is on the mathematical foundation of the adaptive algorithms in the sense of rigorous convergence analysis. In particular, we prove that the proposed algorithms drive the underlying energy error estimates to zero.
Numerical simulation of flow problems and wave propagation in heterogeneous media has important applications in many engineering areas. However, numerical solutions on the fine grid are often prohibitively expensive, and multiscale model reduction techniques are introduced to efficiently solve for an accurate approximation on the coarse grid. In this paper, we propose an energy minimization based multiscale model reduction approach in the discontinuous Galerkin discretization setting. The main idea of the method is to extract the non-decaying component in the high conductivity regions by identifying dominant modes with small eigenvalues of local spectral problems, and define multiscale basis functions in coarse oversampled regions by constraint energy minimization problems. The multiscale basis functions are in general discontinuous on the coarse grid and coupled by interior penalty discontinuous Galerkin formulation. The minimal degree of freedom in representing high-contrast features is achieved through the design of local spectral problems, which provides the most compressed local multiscale space. We analyze the method for solving Darcy flow problem and show that the convergence is linear in coarse mesh size and independent of the contrast, provided that the oversampling size is appropriately chosen. Numerical results are presented to show the performance of the method for simulation on flow problem and wave propagation in high-contrast heterogeneous media.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا