No Arabic abstract
We perform real-time lattice simulations of nonequilibrium quark production in the longitudinally expanding QCD plasma. Starting from a highly occupied gluonic state with vacuum quark sector, we extract the time evolution of quark and gluon number densities per unit transverse area and rapidity. The total quark number shows after an initial rapid increase an almost linear growth with time. Remarkably, this growth rate appears to be consistent with a simple kinetic theory estimate involving only two-to-two scattering processes in small-angle approximation. This extends previous findings about the role of two-to-two scatterings for purely gluonic dynamics in accordance with the early stages of the bottom-up thermalization scenario.
We present real-time lattice simulation results for nonequilibrium quark production from an over-occupied gluon plasma in longitudinally expanding geometry. The quark number density per unit transverse area and rapidity shows almost linear growth in time, and its growth rate appears to be consistent with a simple kinetic theory estimate involving only two-to-two scattering processes in small-angle approximation. We also find that quarks produced at early times satisfy a nonequilibrium scaling law.
Axial charge production at the early stage of heavy-ion collisions is investigated within the framework of real-time lattice simulations at leading order in QCD coupling. Starting from color glass condensate initial conditions, the time evolution of quantum quark fields under classical color gauge fields is computed on a lattice in longitudinally expanding geometry. We consider simple color charge distributions in Lorentz contracted nuclei that realize flux tube-like configurations of color fields carrying nonzero topological charge after a collision. By employing the Wilson fermion extended to the longitudinally expanding geometry, we demonstrate the realization of the axial anomaly on the real-time lattice.
We extract the heavy-quark diffusion coefficient kappa and the resulting momentum broadening <p^2> in a far-from-equilibrium non-Abelian plasma. We find several features in the time dependence of the momentum broadening: a short initial rapid growth of <p^2>, followed by linear growth with time due to Langevin-type dynamics and damped oscillations around this growth at the plasmon frequency. We show that these novel oscillations are not easily explained using perturbative techniques but result from an excess of gluons at low momenta. These oscillation are therefore a gauge invariant confirmation of the infrared enhancement we had previously observed in gauge-fixed correlation functions. We argue that the kinetic theory description of such systems becomes less reliable in the presence of this IR enhancement.
We investigate axial charge production in two-color QCD out of equilibrium. We compute the real-time evolution starting with spatially homogeneous strong gauge fields, while the fermions are in vacuum. The idealized class of initial conditions is motivated by glasma flux tubes in the context of heavy-ion collisions. We focus on axial charge production at early times, where important aspects of the anomalous dynamics can be derived analytically. This is compared to real-time lattice simulations. Quark production at early times leading to anomalous charge generation is investigated using Wilson fermions. Our results indicate that coherent gauge fields can transiently produce significant amounts of axial charge density, while part of the induced charges persist to be present even well beyond characteristic decoherence times. The comparisons to analytic results provide stringent tests of real-time representations of the axial anomaly on the lattice.
The thesis contains studies of properties quark-gluon plasma, using some non-perturbative techniques. It contains a brief introduction of quark-gluon plasma (QGP) and discussion on various signatures along with a motivation for this thesis work. It presents the basic mathematical tools and ingredients required for the thesis, i.e. basics of QCD, Imaginary and Real Time Formalism, Hard Thermal Loop perturbation theory (HTLpt), Gribov-Zwanziger (GZ) action, the Correlation Function along with the Spectral Function and Operator Product Expansion (OPE) and QCD in magnetized medium. OPE is used to compute the dilepton rate in intermediate mass range by incorporating the non-perturbative dynamics of QCD through the inclusion of non-vanishing quark and gluon condensates in combination with the Green functions in momentum space. Also the magnetic scale (g^2T) in the HTL perturbation theory, related to the confining properties of the QCD is taken into account using the GZ action through a mass parameter, which reflects a new space-like quark mode in the collective excitation. The impact of this new exciting mode on the DPR has been studied and its important consequences has been discussed. A hot magnetized medium introduces another scale in the system in addition to temperature. Electromagnetic spectral properties and DPR are studied completely analytically in presence of both strong and weak background magnetic fields at finite temperature. The Debye screening in a hot and magnetized medium has been studied which reveals some of the intriguing properties of the medium in presence of both strong and weak magnetic field. Also an important quantity that characterizes the QGP, namely quark number susceptibility has been investigated. Most of the non-perturbative results discussed in this thesis are compared with those of perturbative ones and lattice QCD.