Do you want to publish a course? Click here

Coexistence of surface and bulk state and negative magnetoresistance in Sulfur doped Bi2Se3

108   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magneto-transport properties in Sulfur doped Bi2Se3 are investigated. The magnetoresistance (MR) decreases with increase of S content and finally for 7% (i.e. y=0.21) S doping the magnetoresistance becomes negative. This negative MR is unusual as it is observed when magnetic field is applied with the perpendicular direction to the plane of the sample. The magneto-transport behavior shows the shubnikov-de hass (SdH) oscillation indicating the coexistence of both surface and bulk states. The negative MR has been attributed to the bulk conduction.



rate research

Read More

Topological insulators (TIs) are predicted to be composed of an insulating bulk state along with conducting channels on the boundary of the material. In Bi2Se3, however, the Fermi level naturally resides in the conduction band due to intrinsic doping by selenium vacancies, leading to metallic bulk states. In such non-ideal TIs it is not well understood how the surface and bulk states behave under environmental disorder. In this letter, based on transport measurements of Bi2Se3 thin films, we show that the bulk states are sensitive to environmental disorder but the surface states remain robust.
We analyze the finite lifetimes of the topologically protected electrons in the surface state of Bi2Te3 and Bi2Se3 due to elastic scattering off surface vacancies and as a function of energy. The scattering rates are decomposed into surface-to-surface and surface-to-bulk contributions, giving us new fundamental insights into the scattering properties of the topological surface states (TSS). If the number of possible final bulk states is much larger than the number of final surface states, then the surface-to-bulk contribution is of importance, otherwise the surface-to-surface contribution dominates. Additionally, we find defect resonances that have a significant impact on the scattering properties of the TSS. They can strongly change the lifetime of the surface state to vary between tens of fs to ps at surface defect concentrations of 1 at%.
In ideal topological insulator (TI) films the bulk state, which is supposed to be insulating, should not provide any electric coupling between the two metallic surfaces. However, transport studies on existing TI films show that the topological states on opposite surfaces are electrically tied to each other at thicknesses far greater than the direct coupling limit where the surface wavefunctions overlap. Here, we show that as the conducting bulk channels are suppressed, the parasitic coupling effect diminishes and the decoupled surface channels emerge as expected for ideal TIs. In Bi2Se3 thin films with fully suppressed bulk states, the two surfaces, which are directly coupled below ~10 QL, become gradually isolated with increasing thickness and are completely decoupled beyond ~20 QL. On such a platform, it is now feasible to implement transport devices whose functionality relies on accessing the individual surface layers without any deleterious coupling effects.
By combining angle-resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), piezoresponse force microscopy (PFM) and first-principles calculations, we have studied the low-energy band structure, atomic structure and charge polarization on the surface of a topological semimetal candidate TaNiTe5. Dirac-like surface states were observed on the (010) surface by ARPES, consistent with the first-principles calculations. On the other hand, PFM reveals a switchable ferroelectric-like polarization on the same surface. We propose that the noncentrosymmetric surface reconstruction observed by STM could be the origin of the observed ferroelectric-like state in this novel material. Our findings provide a new platform with the coexistence of ferroelectric-like surface charge distribution and novel surface states.
156 - D. Nevola , H. X. Li , J.-Q. Yan 2020
Surface magnetism and its correlation with the electronic structure are critical to understand the gapless topological surface state in the intrinsic magnetic topological insulator MnBi$_2$Te$_4$. Here, using static and time resolved angle-resolved photoemission spectroscopy (ARPES), we find a significant ARPES intensity change together with a gap opening on a Rashba-like conduction band. Comparison with a model simulation strongly indicates that the surface magnetism on cleaved MnBi$_2$Te$_4$ is the same as its bulk state. The coexistence of surface ferromagnetism and a gapless TSS uncovers the novel complexity of MnBi$_2$Te$_4$ that may be responsible for the low quantum anomalous Hall temperature of exfoliated MnBi$_2$Te$_4$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا