Do you want to publish a course? Click here

On orbital stability of ground states for finite crystals in fermionic Schrodinger--Poisson model

58   0   0.0 ( 0 )
 Added by Alexander Komech
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We consider the Schrodinger--Poisson--Newton equations for finite crystals under periodic boundary conditions with one ion per cell of a lattice. The electron field is described by the $N$-particle Schrodinger equation with antisymmetric wave function. Our main results are i) the global dynamics with moving ions, and ii) the orbital stability of periodic ground state under a novel Jellium and Wiener-type conditions on the ion charge density. Under Jellium condition both ionic and electronic charge densities of the ground state are uniform.



rate research

Read More

We consider the Schrodinger-Poisson-Newton equations for finite crystals under periodic boundary conditions with one ion per cell of a lattice. The electrons are described by one-particle Schrodinger equation. Our main results are i) the global dynamics with moving ions; ii) the orbital stability of periodic ground state under a novel Jellium and Wiener-type conditions on the ion charge density. Under the Jellium condition both ionic and electronic charge densities for the ground state are uniform.
The Schrodinger-Poisson-Newton equations for crystals with a cubic lattice and one ion per cell are considered. The ion charge density is assumed i) to satisfy the Wiener and Jellium conditions introduced in our previous paper [28], and ii) to be exponentially decaying at infinity. The corresponding examples are given. We study the linearized dynamics at the ground state. The dispersion relations are introduced via spectral resolution for the non-selfadjoint Hamilton generator using the positivity of the energy established in [28]. Our main result is the dispersion decay in the weighted Sobolev norms for solutions with initial states from the space of continuous spectrum of the Hamilton generator. We also prove the absence of singular spectrum and limiting absorption principle. The multiplicity of every eigenvalue is shown to be infinite. The proofs rely on novel exact bounds and compactness for the inversion of the Bloch generators and on uniform asymptotics for the dispersion relations. We derive the bounds by the energy positivity from [28]. We also use the theory of analytic sets.
We give short survey on the question of asymptotic stability of ground states of nonlinear Schrodinger equations, focusing primarily on the so called nonlinear Fermi Golden Rule.
We prove the existence of ground states for the semi-relativistic Schrodinger-Poisson-Slater energy $$I^{alpha,beta}(rho)=inf_{substack{uin H^frac 12(R^3) int_{R^3}|u|^2 dx=rho}} frac{1}{2}|u|^2_{H^frac 12(R^3)} +alphaintint_{R^{3}timesR^{3}} frac{| u(x)|^{2}|u(y)|^2}{|x-y|}dxdy-betaint_{R^{3}}|u|^{frac{8}{3}}dx$$ $alpha,beta>0$ and $rho>0$ is small enough. The minimization problem is $L^2$ critical and in order to characterize of the values $alpha, beta>0$ such that $I^{alpha, beta}(rho)>-infty$ for every $rho>0$, we prove a new lower bound on the Coulomb energy involving the kinetic energy and the exchange energy. We prove the existence of a constant $S>0$ such that $$frac{1}{S}frac{|varphi|_{L^frac 83(R^3)}}{|varphi|_{dot H^frac 12(R^3)}^frac 12}leq left (intint_{R^3times R^3} frac{|varphi(x)|^2|varphi(y)|^2}{|x-y|}dxdyright)^frac 18 $$ for all $varphiin C^infty_0(R^3)$. Eventually we show that similar compactness property fails provided that in the energy above we replace the inhomogeneous Sobolev norm $|u|^2_{H^frac 12(R^3)}$ by the homogeneous one $|u|_{dot H^frac 12(R^3)}$.
We study generic semilinear Schrodinger systems which may be written in Hamiltonian form. In the presence of a single gauge invariance, the components of a solution may exchange mass between them while preserving the total mass. We exploit this feature to unravel new orbital instability results for ground-states. More precisely, we first derive a general instability criterion and then apply it to some well-known models arising in several physical contexts. In particular, this mass-transfer instability allows us to exhibit $L^2$-subcritical unstable ground-states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا