No Arabic abstract
In this letter, we study multiuser communication systems enabled by an unmanned aerial vehicle (UAV) that is equipped with a directional antenna of adjustable beamwidth. We propose a fly-hover-and-communicate protocol where the ground terminals (GTs) are partitioned into disjoint clusters that are sequentially served by the UAV as it hovers above the corresponding cluster centers. We jointly optimize the UAVs flying altitude and antenna beamwidth for throughput optimization in three fundamental multiuser communication models, namely UAV-enabled downlink multicasting (MC), downlink broadcasting (BC), and uplink multiple access (MAC). Our results show that the optimal UAV altitude and antenna beamwidth critically depend on the communication model considered.
In this paper, the problem of unmanned aerial vehicle (UAV) deployment, power allocation, and bandwidth allocation is investigated for a UAV-assisted wireless system operating at terahertz (THz) frequencies. In the studied model, one UAV can service ground users using the THz frequency band. However, the highly uncertain THz channel will introduce new challenges to the UAV location, user power, and bandwidth allocation optimization problems. Therefore, it is necessary to design a novel framework to deploy UAVs in the THz wireless systems. This problem is formally posed as an optimization problem whose goal is to minimize the total delays of the uplink and downlink transmissions between the UAV and the ground users by jointly optimizing the deployment of the UAV, the transmit power and the bandwidth of each user. The communication delay is crucial for emergency communications. To tackle this nonconvex delay minimization problem, an alternating algorithm is proposed while iteratively solving three subproblems: location optimization subproblem, power control subproblem, and bandwidth allocation subproblem. Simulation results show that the proposed algorithm can reduce the transmission delay by up to $59.3%$, $49.8%$ and $75.5%$ respectively compared to baseline algorithms that optimize only UAV location, bandwidth allocation or transmit power control.
Wireless communication enabled by unmanned aerial vehicles (UAVs) has emerged as an appealing technology for many application scenarios in future wireless systems. However, the limited endurance of UAVs greatly hinders the practical implementation of UAV-enabled communications. To overcome this issue, this paper proposes a novel scheme for UAV-enabled communications by utilizing the promising technique of proactive caching at the users. Specifically, we focus on content-centric communication systems, where a UAV is dispatched to serve a group of ground nodes (GNs) with random and asynchronous requests for files drawn from a given set. With the proposed scheme, at the beginning of each operation period, the UAV pro-actively transmits the files to a subset of selected GNs that cooperatively cache all the files in the set. As a result, when requested, a file can be retrieved by each GN either directly from its local cache or from its nearest neighbor that has cached the file via device-to-device (D2D) communications. It is revealed that there exists a fundamental trade-off between the file caching cost, which is the total time required for the UAV to transmit the files to their designated caching GNs, and the file retrieval cost, which is the average time required for serving one file request. To characterize this trade-off, we formulate an optimization problem to minimize the weighted sum of the two costs, via jointly designing the file caching policy, the UAV trajectory and communication scheduling. As the formulated problem is NP-hard in general, we propose efficient algorithms to find high-quality approximate solutions for it. Numerical results are provided to corroborate our study and show the great potential of proactive caching for overcoming the limited endurance issue in UAV-enabled communications.
This paper studies an unmanned aerial vehicle (UAV)-enabled multicasting system, where a UAV is dispatched to disseminate a common file to a number of geographically distributed ground terminals (GTs). Our objective is to design the UAV trajectory to minimize its mission completion time, while ensuring that each GT is able to successfully recover the file with a high probability required. We consider the use of practical random linear network coding (RLNC) for UAV multicasting, so that each GT is able to recover the file as long as it receives a sufficiently large number of coded packets. However, the formulated UAV trajectory optimization problem is non-convex and difficult to be directly solved. To tackle this issue, we first derive an analytical lower bound for the success probability of each GTs file recovery. Based on this result, we then reformulate the problem into a more tractable form, where the UAV trajectory only needs to be designed to meet a set of constraints each on the minimum connection time with a GT, during which their distance is below a designed threshold. We show that the optimal UAV trajectory only needs to constitute connected line segments, thus it can be obtained by determining first the optimal set of waypoints and then UAV speed along the lines connecting the waypoints. We propose practical schemes for the waypoints design based on a novel concept of virtual base station (VBS) placement and by applying convex optimization techniques. Furthermore, for given set of waypoints, we obtain the optimal UAV speed over the resulting path efficiently by solving a linear programming (LP) problem. Numerical results show that the proposed UAV-enabled multicasting with optimized trajectory design achieves significant performance gains as compared to benchmark schemes.
Unmanned aerial vehicles (UAVs) have emerged as a promising solution to provide wireless data access for ground users in various applications (e.g., in emergence situations). This paper considers a UAV-enabled wireless network, in which multiple UAVs are deployed as aerial base stations (BSs) to serve users distributed on the ground. Different from prior works that ignore UAVs backhaul connections, we practically consider that these UAVs are connected to the core network through a ground gateway node via rate-limited multi-hop wireless backhauls. We also consider that the air-to-ground (A2G) access links from UAVs to users and the air-to-air (A2A) backhaul links among UAVs are operated over orthogonal frequency bands. Under this setup, we aim to maximize the common (or minimum) throughput among all the ground users in the downlink of this network subject to the flow conservation constraints at the UAVs, by optimizing the UAVs deployment locations, jointly with the bandwidth and power allocation of both the access and backhaul links. However, the common throughput maximization is a non-convex optimization problem that is difficult to be solved optimally. To tackle this issue, we use the techniques of alternating optimization and successive convex programming (SCP) to obtain a locally optimal solution. Numerical results show that the proposed design significantly improves the common throughput among all ground users as compared to other benchmark schemes.
In this paper, we study a cellular-enabled unmanned aerial vehicle (UAV) communication system consisting of one UAV and multiple ground base stations (GBSs). The UAV has a mission of flying from an initial location to a final location, during which it needs to maintain reliable wireless connection with the cellular network by associating with one of the GBSs at each time instant. We aim to minimize the UAV mission completion time by optimizing its trajectory, subject to a quality of connectivity constraint of the GBS-UAV link specified by a minimum received signal-to-noise ratio (SNR) target, which needs to be satisfied throughout the mission. This problem is non-convex and difficult to be optimally solved. We first propose an effective approach to check its feasibility based on graph connectivity verification. Then, by examining the GBS-UAV association sequence during the UAV mission, we obtain useful insights on the optimal UAV trajectory, based on which an efficient algorithm is proposed to find an approximate solution to the trajectory optimization problem by leveraging techniques in convex optimization and graph theory. Numerical results show that our proposed trajectory design achieves near-optimal performance.