Perfect fluids are modeled by using an effective field theory approach which naturally gives a self-consistent and unambiguous description of the intrinsic non-adiabatic contribution to pressure variations. We study the impact of intrinsic entropy perturbation on the superhorizon dynamics of the curvature perturbation ${cal R}$ in the dark sector. The dark sector, made of dark matter and dark energy is described as a single perfect fluid. The non-perturbative vorticitys dynamics and the Weinberg theorem violation for perfect fluids are also studied.
In this Letter, we describe how a spectrum of entropic perturbations generated during a period of slow contraction can source a nearly scale-invariant spectrum of curvature perturbations on length scales larger than the Hubble radius during the transition from slow contraction to a classical non-singular bounce (the `graceful exit phase). The sourcing occurs naturally through higher-order scalar field kinetic terms common to classical (non-singular) bounce mechanisms. We present a concrete example in which, by the end of the graceful exit phase, the initial entropic fluctuations have become negligible and the curvature fluctuations have a nearly scale-invariant spectrum with an amplitude consistent with observations.
The observed temperature fluctuations in the cosmic microwave background can be traced back to primordial curvature modes that are sourced by adiabatic and/or entropic matter perturbations. In this paper, we explore the entropic mechanism in the context of non-singular bouncing cosmologies. We show that curvature modes are naturally generated during `graceful exit, i.e., when the smoothing slow contraction phase ends and the universe enters the bounce stage. Here, the key role is played by the kinetic energy components that come to dominate the energy density and drive the evolution towards the cosmological bounce.
In order to apply holography and entropy relations to the whole universe, which is a gravitational and thus nonextensive system, for consistency one should use the generalized definition for the universe horizon entropy, namely Tsallis nonextensive entropy. We formulate Tsallis holographic dark energy, which is a generalization of standard holographic dark energy quantified by a new dimensionless parameter $delta$, possessing the latter as a particular sub-case. We provide a simple differential equation for the dark energy density parameter, as well as an analytical expression for its equation-of-state parameter. In this scenario the universe exhibits the usual thermal history, namely the successive sequence of matter and dark-energy epochs, before resulting in a complete dark energy domination in the far future. Additionally, the dark energy equation-of-state parameter presents a rich behavior and, according to the value of $delta$, it can be quintessence-like, phantom-like, or experience the phantom-divide crossing before or after the present time. Finally, we confront the scenario with Supernovae type Ia and Hubble parameter observational data, and we show that the agreement is very good, with $delta$ preferring a value slightly larger than its standard value 1.
We study the emergence of entropy in gravitational production of dark matter particles, ultra light scalars minimally coupled to gravity and heavier fermions, from inflation to radiation domination (RD). Initial conditions correspond to dark matter fields in their Bunch-Davies vacua during inflation. The out states are correlated particle-antiparticle pairs, and the distribution function is found in both cases. In the adiabatic regime the density matrix features rapid decoherence by dephasing from interference effects in the basis of out particle states, effectively reducing it to a diagonal form with a concomitant von Neumann entropy. We show that it is exactly the entanglement entropy obtained by tracing over one member of the correlated pairs. Remarkably, for both statistics the entanglement entropy is similar to the quantum kinetic entropy in terms of the distribution function with noteworthy differences stemming from pair correlations. The entropy and the kinetic fluid form of the energy momentum tensor all originate from decoherence of the density matrix. For ultra light scalar dark matter, the distribution function peaks at low momentum $propto 1/k^3$ and the specific entropy is $ll 1$. This is a hallmark of a emph{condensed phase} but with vanishing field expectation value. For fermionic dark matter the distribution function is nearly thermal and the specific entropy is $mathcal{O}(1)$ typical of a thermal species. We argue that the functional form of the entanglement entropy is quite general and applies to alternative production mechanisms such as parametric amplification during reheating.
We show that in imaginary time quantum metric fluctuations of empty space form a self-consistent de Sitter gravitational instanton that can be thought of as describing tunneling from nothing into de Sitter space of real time (no cosmological constant or scalar fields are needed). For the first time, this mechanism is activated to give birth to a flat inflationary Universe. For the second time, it is turned on to complete the cosmological evolution after the energy density of matter drops below the threshold (the energy density of instantons). A cosmological expansion with dark energy takes over after the scale factor exceeds this threshold, which marks the birth of dark energy at a redshift $1+zapprox 1.3$ and provides a possible solution to the coincidence problem. The number of gravitons which tunneled into the Universe must be of the order of $10^{122}$ to create the observed value of the Hubble constant. This number has nothing to do with vacuum energy, which is a possible solution to the old cosmological constant problem. The emptying Universe should possibly complete its evolution by tunneling back to nothing. After that, the entire scenario is repeated, and it can happen endlessly.