Do you want to publish a course? Click here

Organic Haze as a Biosignature in Anoxic Earth-like Atmospheres

135   0   0.0 ( 0 )
 Added by Giada Arney
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Early Earth may have hosted a biologically-mediated global organic haze during the Archean eon (3.8-2.5 billion years ago). This haze would have significantly impacted multiple aspects of our planet, including its potential for habitability and its spectral appearance. Here, we model worlds with Archean-like levels of carbon dioxide orbiting the ancient sun and an M4V dwarf (GJ 876) and show that organic haze formation requires methane fluxes consistent with estimated Earth-like biological production rates. On planets with high fluxes of biogenic organic sulfur gases (CS2, OCS, CH3SH, and CH3SCH3), photochemistry involving these gases can drive haze formation at lower CH4/CO2 ratios than methane photochemistry alone. For a planet orbiting the sun, at 30x the modern organic sulfur gas flux, haze forms at a CH4/CO2 ratio 20% lower than at 1x the modern organic sulfur flux. For a planet orbiting the M4V star, the impact of organic sulfur gases is more pronounced: at 1x the modern Earth organic sulfur flux, a substantial haze forms at CH4/CO2 ~ 0.2, but at 30x the organic sulfur flux, the CH4/CO2 ratio needed to form haze decreases by a full order of magnitude. Detection of haze at an anomalously low CH4/CO2 ratio could suggest the influence of these biogenic sulfur gases, and therefore imply biological activity on an exoplanet. When these organic sulfur gases are not readily detectable in the spectrum of an Earth-like exoplanet, the thick organic haze they can help produce creates a very strong absorption feature at UV-blue wavelengths detectable in reflected light at a spectral resolution as low as 10. In direct imaging, constraining CH4 and CO2 concentrations will require higher spectral resolution, and R > 170 is needed to accurately resolve the structure of the CO2 feature at 1.57 {mu}m, likely, the most accessible CO2 feature on an Archean-like exoplanet.



rate research

Read More

Research for possible biosignature gases on habitable exoplanet atmosphere is accelerating. We add isoprene, C5H8, to the roster of biosignature gases. We found that formation of isoprene geochemical formation is highly thermodynamically disfavored and has no known abiotic false positives. The isoprene production rate on Earth rivals that of methane (~ 500 Tg yr-1). On Earth, isoprene is rapidly destroyed by oxygen-containing radicals, but its production is ubiquitous to a diverse array of evolutionarily distant organisms, from bacteria to plants and animals-few, if any at all, volatile secondary metabolite has a larger evolutionary reach. While non-photochemical sinks of isoprene may exist, the destruction of isoprene in an anoxic atmosphere is mainly driven by photochemistry. Motivated by the concept that isoprene might accumulate in anoxic environments, we model the photochemistry and spectroscopic detection of isoprene in habitable temperature, rocky exoplanet anoxic atmospheres with a variety of atmosphere compositions under different host star UV fluxes. Limited by an assumed 10 ppm instrument noise floor, habitable atmosphere characterization using JWST is only achievable with transit signal similar or larger than that for a super-Earth sized exoplanet transiting an M dwarf star with an H2-dominated atmosphere. Unfortunately, isoprene cannot accumulate to detectable abundance without entering a run-away phase, which occurs at a very high production rate, ~ 100 times Earths production rate. In this run-away scenario isoprene will accumulate to > 100 ppm and its spectral features are detectable with ~ 20 JWST transits. One caveat is that some spectral features are hard to be distinguished from that of methane. Despite these challenges, isoprene is worth adding to the menu of potential biosignature gases.
A long-term goal of exoplanet studies is the identification and detection of biosignature gases. Beyond the most discussed biosignature gas O$_2$, only a handful of gases have been considered in detail. Here we evaluate phosphine (PH$_3$). On Earth, PH$_3$ is associated with anaerobic ecosystems, and as such is a potential biosignature gas on anoxic exoplanets. We simulate CO$_2-$ and H$_2-$dominated habitable terrestrial planet atmospheres. We find that PH$_3$ can accumulate to detectable concentrations on planets with surface production fluxes of 10$^{10}$-10$^{14}$ cm$^{-2}$ s$^{-1}$ (corresponding to surface concentrations of 10s of ppb to 100s of ppm), depending on atmospheric composition and UV flux. While high, such surface fluxes are comparable to the global terrestrial production rate of CH$_4$ (10$^{11}$ cm$^{-2}$ s$^{-1}$) and below the maximum local terrestrial PH$_3$ production rate (10$^{14}$ cm$^{-2}$ s$^{-1}$). As with other gases, PH$_3$ can more readily accumulate on low-UV planets, e.g. planets orbiting quiet M-dwarfs or with a photochemical UV shield. If detected, PH$_3$ is a promising biosignature gas, as it has no known abiotic false positives on terrestrial planets that could generate the high fluxes required for detection. PH$_3$ also has 3 strong spectral features such that in any atmosphere scenario 1 of the 3 will be unique compared to other dominant spectroscopic molecules. PH$_3$s weakness as a biosignature gas is its high reactivity, requiring high outgassing for detectability. We calculate that 10s of hours of JWST time are required for a potential detection of PH$_3$. Yet because PH$_3$ is spectrally active in the same wavelength regions as other atmospherically important molecules (e.g., H$_2$O and CH$_4$), searches for PH$_3$ can be carried out at no additional observational cost to searches for other molecules relevant to exoplanet habitability.
Ammonia (NH3) in a terrestrial planet atmosphere is generally a good biosignature gas, primarily because terrestrial planets have no significant known abiotic NH3 source. The conditions required for NH3 to accumulate in the atmosphere are, however, stringent. NH3s high water solubility and high bio-useability likely prevent NH3 from accumulating in the atmosphere to detectable levels unless life is a net source of NH3 and produces enough NH3 to saturate the surface sinks. Only then can NH3 accumulate in the atmosphere with a reasonable surface production flux. For the highly favorable planetary scenario of terrestrial planets with H2-dominated atmospheres orbiting M dwarf stars (M5V), we find a minimum of about 5 ppm column-averaged mixing ratio is needed for NH3 to be detectable with JWST, considering a 10 ppm JWST systematic noise floor. When the surface is saturated with NH3 (i.e., there are no NH3-removal reactions on the surface), the required biological surface flux to reach 5 ppm is on the order of 10^10 molecules cm-2 s-1, comparable to the terrestrial biological production of CH4. However, when the surface is unsaturated with NH3, due to additional sinks present on the surface, life would have to produce NH3 at surface flux levels on the order of 10^15 molecules cm-2 s-1 (approx. 4.5x10^6 Tg year-1). This value is roughly 20,000 times greater than the biological production of NH3 on Earth and about 10,000 times greater than Earths CH4 biological production. Volatile amines have similar solubilities and reactivities to NH3 and hence share NH3s weaknesses and strengths as a biosignature. Finally, to establish NH3 as a biosignature gas, we must rule out mini-Neptunes with deep atmospheres, where temperatures and pressures are high enough for NH3s atmospheric production.
New observing capabilities coming online over the next few years will provide opportunities for characterization of exoplanet atmospheres. However, clouds/hazes could be present in the atmospheres of many exoplanets, muting the amplitude of spectral features. We use laboratory simulations to explore photochemical haze formation in H2-rich exoplanet atmospheres at 800 K with metallicity either 100 and 1000 times solar. We find that haze particles are produced in both simulated atmospheres with small particle size (20 to 140 nm) and relative low production rate (2.4 x 10-5 to 9.7 x 10-5 mg cm-3 h-1), but the particle size and production rate is dependent on the initial gas mixtures and the energy sources used in the simulation experiments. The gas phase mass spectra show that complex chemical processes happen in these atmospheres and generate new gas products that can further react to form larger molecules and solid haze particles. Two H2-rich atmospheres with similar C/O ratios (~0.5) yield different haze particles size, haze production rate, and gas products, suggesting both the elemental abundances and their bonding environments in an atmosphere can significantly affect the photochemistry. There is no methane (CH4) in our initial gas mixtures, although CH4 is often believed to be required to generate organic hazes. However, haze production rates from our experiments with different initial gas mixtures indicate that CH4 is neither required to generate organic hazes nor necessary to promote the organic haze formation. The variety and relative yield of the gas products indicate that CO and N2 enrich chemical reactions in H2-rich atmospheres.
Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event (GOE) in Earths history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O$_2$ concentrations are fixed to values inferred by geological evidence. Applying a unique tool, ours is the first quantitative analysis of catalytic cycles that governed O$_2$ in early Earths atmosphere near the GOE. Complicated oxidation pathways play a key role in destroying O$_2$, whereas in the upper atmosphere, most O$_2$ is formed abiotically via CO$_2$ photolysis. The O$_2$ bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH$_4$ oxidation scheme. We calculate increased CH$_4$ with increasing O$_2$ during the GOE. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity (NPP) of the biosphere that produces O$_2$ is unique. Mixing, CH$_4$ fluxes, ocean solubility, and mantle/crust properties strongly affect NPP and surface O$_2$ fluxes. Regarding exoplanets, different states of O$_2$ could exist for similar biomass output. Strong geological activity could lead to false negatives for life.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا