Do you want to publish a course? Click here

Modular Virasoro Vertex Algebras and Affine Vertex Algebras

162   0   0.0 ( 0 )
 Added by Haisheng Li Dr.
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we study Virasoro vertex algebras and affine vertex algebras over a general field of characteristic $p>2$. More specifically, we study certain quotients of the universal Virasoro and affine vertex algebras by ideals related to the $p$-centers of the Virasoro algebra and affine Lie algebras. Among the main results, we classify their irreducible $mathbb{N}$-graded modules by explicitly determining their Zhu algebras and show that these vertex algebras have only finitely many irreducible $mathbb{N}$-graded modules and they are $C_2$-cofinite.



rate research

Read More

127 - Fei Qi 2021
In this paper we study the first cohomologies for the following three examples of vertex operator algebras: (i) the simple affine VOA associated to a simple Lie algebra with positive integral level; (ii) the Virasoro VOA corresponding to minimal models; (iii) the lattice VOA associated to a positive definite even lattice. We prove that in all these cases, the first cohomology $H^1(V, W)$ are given by the zero-mode derivations when $W$ is any $V$-module with an $N$-grading (not necessarily by the operator $L(0)$). This agrees with the conjecture made by Yi-Zhi Huang and the author in 2018. For negative energy representations of Virasoro VOA, the same conclusion holds when $W$ is $L(0)$-graded with lowest weight greater or equal to $-3$. Relationship between the first cohomology of the VOA and that of the associated Zhus algebra is also discussed.
In this paper, we study a certain deformation $D$ of the Virasoro algebra that was introduced and called $q$-Virasoro algebra by Nigro,in the context of vertex algebras. Among the main results, we prove that for any complex number $ell$, the category of restricted $D$-modules of level $ell$ is canonically isomorphic to the category of quasi modules for a certain vertex algebra of affine type. We also prove that the category of restricted $D$-modules of level $ell$ is canonically isomorphic to the category of $mathbb{Z}$-equivariant $phi$-coordinated quasi modules for the same vertex algebra. In the process, we introduce and employ a certain infinite dimensional Lie algebra which is defined in terms of generators and relations and then identified explicitly with a subalgebra of $mathfrak{gl}_{infty}$.
In this paper, we study nullity-2 toroidal extended affine Lie algebras in the context of vertex algebras and their $phi$-coordinated modules. Among the main results, we introduce a variant of toroidal extended affine Lie algebras, associate vertex algebras to the variant Lie algebras, and establish a canonical connection between modules for toroidal extended affine Lie algebras and $phi$-coordinated modules for these vertex algebras. Furthermore, by employing some results of Billig, we obtain an explicit realization of irreducible modules for the variant Lie algebras.
127 - Haihua Huang , Naihuan Jing 2021
In this paper we study the integral form of the lattice vertex algebra $V_L$. Based on the lattice structure, we introduce and study the associated modular vertex algebras $V_p$ and the quotient algebra $overline{V}_p$ as well as their irreducible modules over $mathbb Z_p$. We show that divided powers of general vertex operators preserve the integral lattice spanned by Schur functions indexed by partition-valued functions. We also show that the Garland operators, counterparts of divided powers of Heisenberg elements in affine Lie algebras, also preserve the integral form. These construe analogs of the Kostant $mathbb Z$-forms for the enveloping algebras of simple Lie algebras and the algebraic affine Lie groups in the situation of the lattice vertex algebras. We also prove that the irreducible modules (modulo Heisenberg generators of degree divisible by $p$) remain irreducible for the modular vertex algebra $overline{V}_p$.
139 - Fulin Chen , Shaobin Tan , Nina Yu 2021
For any nullity $2$ extended affine Lie algebra $mathcal{E}$ of maximal type and $ellinmathbb{C}$, we prove that there exist a vertex algebra $V_{mathcal{E}}(ell)$ and an automorphism group $G$ of $V_{mathcal{E}}(ell)$ equipped with a linear character $chi$, such that the category of restricted $mathcal{E}$-modules of level $ell$ is canonically isomorphic to the category of $(G,chi)$-equivariant $phi$-coordinated quasi $V_{mathcal{E}}(ell)$-modules. Moreover, when $ell$ is a nonnegative integer, there is a quotient vertex algebra $L_{mathcal{E}}(ell)$ of $V_{mathcal{E}}(ell)$ modulo by a $G$-stable ideal, and we prove that the integrable restricted $mathcal{E}$-modules of level $ell$ are exactly the $(G,chi)$-equivariant $phi$-coordinated quasi $L_{mathcal{E}}(ell)$-modules.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا