Do you want to publish a course? Click here

Optimizing Beam Transport in Rapidly Compressing Beams on the Neutralized Drift Compression Experiment - II

121   0   0.0 ( 0 )
 Added by Anton Stepanov
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Neutralized Drift Compression Experiment-II (NDCX-II) is an induction linac that generates intense pulses of 1.2 MeV helium ions for heating matter to extreme conditions. Here, we present recent results on optimizing beam transport. The NDCX-II beamline includes a 1-meter-long drift section downstream of the last transport solenoid, which is filled with charge-neutralizing plasma that enables rapid longitudinal compression of an intense ion beam against space-charge forces. The transport section on NDCX-II consists of 28 solenoids. Finding optimal field settings for a group of solenoids requires knowledge of the envelope parameters of the beam. Imaging the beam on scintillator gives the radius of the beam, but the envelope angle dr/dz is not measured directly. We demonstrate how the parameters of the beam envelope (r, dr/dz, and emittance) can be reconstructed from a series of images taken at varying B-field strengths of a solenoid upstream of the scintillator. We use this technique to evaluate emittance at several points in the NDCX-II beamline and for optimizing the trajectory of the beam at the entry of the plasma-filled drift section.



rate research

Read More

We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted on the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.
An electron plasma lens is a cost-effective, compact, strong-focusing element that can ensure efficient capture of low-energy proton and ion beams from laser-driven sources. A Gabor lens prototype was built for high electron density operation at Imperial College London. The parameters of the stable operation regime of the lens and its performance during a beam test with 1.4 MeV protons are reported here. Narrow pencil beams were imaged on a scintillator screen 67 cm downstream of the lens. The lens converted the pencil beams into rings that show position-dependent shape and intensity modulation that are dependent on the settings of the lens. Characterisation of the focusing effect suggests that the plasma column exhibited an off-axis rotation similar to the $m=1$ diocotron instability. The association of the instability with the cause of the rings was investigated using particle tracking simulations.
89 - C. Hansel , M. Yadav , P. Manwani 2021
A future plasma based linear collider has the potential to reach unprecedented energies and transform our understanding of high energy physics. The extremely dense beams in such a device would cause the plasma ions to fall toward the axis. For more mild ion motion, this introduces a nonlinear perturbation to the focusing fields inside of the bubble. However, for extreme ion motion, the ion distribution collapses to a quasi-equilibrium characterized by a thin filament of extreme density on the axis which generates strong, nonlinear focusing fields. These fields can provoke unacceptable emittance growth that can be reduced through careful beam matching. In this paper, we discuss the rich physics of ion motion, give a brief overview of plans for the E-314 experiment at FACET-II which will experimentally demonstrate ion motion in plasma accelerators, and present results of particle-in-cell simulations of ion motion relevant to the E-314 experiment.
174 - F. Treffert , Q. Ji , P.A. Seidl 2018
The interaction of ion beams with matter includes the investigation of the basic principles of ion stopping in heated materials. An unsolved question is the effect of different, especially higher, ion beam fluences on ion stopping in solid targets. This is relevant in applications such as in fusion sciences. To address this question, a Thomson parabola was built for the Neutralized Drift Compression eXperiment (NDCX-II) for ion energy-loss measurements at different ion beam fluences. The linear induction accelerator NDCX-II delivers 2 ns short, intense ion pulses, up to several tens of nC/pulse, or 10$^{10}$-10$^{11}$ ions, with a peak kinetic energy of ~1.1 MeV and a minimal spot size of 2 mm FWHM. For this particular accelerator the energy determination with conventional beam diagnostics, for example, time of flight measurements, is imprecise due to the non-trivial longitudinal phase space of the beam. In contrast, a Thomson parabola is well suited to reliably determine the beam energy distribution. The Thomson parabola differentiates charged particles by energy and charge-to-mass ratio, through deflection of charged particles by electric and magnetic fields. During first proof-of-principle experiments, we achieved to reproduce the average initial helium beam energy as predicted by computer simulations with a deviation of only 1.4 %. Successful energy-loss measurements with 1 {mu}m thick Silicon Nitride foils show the suitability of the accelerator for such experiments. The initial ion energy was determined during a primary measurement without a target, while a second measurement, incorporating the target, was used to determine the transmitted energy. The energy-loss was then determined as the difference between the two energies.
138 - F. Li 2013
The production of ultra-bright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional (3D) particle-in-cell (PIC) simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is much reduced and the injection is localized along the propagation axis of the wake. This minimizes both the initial thermal emittance and the emittance growth due to transverse phase mixing. 3D PIC simulations show that ultra-short (around 8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes respectively and a brightness greater than 1.7*10e19 A rad-2 m-2 can be obtained for realistic parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا