Do you want to publish a course? Click here

Strong-isospin-breaking correction to the muon anomalous magnetic moment from lattice QCD at the physical point

130   0   0.0 ( 0 )
 Added by Ruth Van de Water
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

All lattice-QCD calculations of the hadronic-vacuum-polarization contribution to the muons anomalous magnetic moment to-date have been performed with degenerate up- and down-quark masses. Here we calculate directly the strong-isospin-breaking correction to $a_mu^{rm HVP}$ for the first time with physical values of $m_u$ and $m_d$ and dynamical $u$, $d$, $s$, and $c$ quarks, thereby removing this important source of systematic uncertainty. We obtain a relative shift to be applied to lattice-QCD results obtained with degenerate light-quark masses of $delta a_mu^{{rm HVP,} m_u eq m_d}$= +1.5(7)%, in agreement with estimates from phenomenology and a recent lattice-QCD calculation with unphysically heavy pions.



rate research

Read More

211 - T. Blum , M. Hayakawa , 2013
After a brief self-contained introduction to the muon anomalous magnetic moment, (g-2), we review the status of lattice calculations of the hadronic vacuum polarization contribution and present first results from lattice QCD for the hadronic light-by-light scattering contribution. The signal for the latter is consistent with model calculations. While encouraging, the statistical error is large and systematic errors are mostly uncontrolled. The method is applied first to pure QED as a check.
The anomalous magnetic moment of the muon, a_mu, has been measured with an overall precision of 540 ppb by the E821 experiment at BNL. Since the publication of this result in 2004 there has been a persistent tension of 3.5 standard deviations with the theoretical prediction of a_mu based on the Standard Model. The uncertainty of the latter is dominated by the effects of the strong interaction, notably the hadronic vacuum polarisation (HVP) and the hadronic light-by-light (HLbL) scattering contributions, which are commonly evaluated using a data-driven approach and hadronic models, respectively. Given that the discrepancy between theory and experiment is currently one of the most intriguing hints for a possible failure of the Standard Model, it is of paramount importance to determine both the HVP and HLbL contributions from first principles. In this review we present the status of lattice QCD calculations of the leading-order HVP and the HLbL scattering contributions, a_mu^hvp and a_mu^hlbl. After describing the formalism to express a_mu^hvp and a_mu^hlbl in terms of Euclidean correlation functions that can be computed on the lattice, we focus on the systematic effects that must be controlled to achieve a first-principles determination of the dominant strong interaction contributions to a_mu with the desired level of precision. We also present an overview of current lattice QCD results for a_mu^hvp and a_mu^hlbl, as well as related quantities such as the transition form factor for pi0 -> gamma*gamma*. While the total error of current lattice QCD estimates of a_mu^hvp has reached the few-percent level, it must be further reduced by a factor 5 to be competitive with the data-driven dispersive approach. At the same time, there has been good progress towards the determination of a_mu^hlbl with an uncertainty at the 10-15%-level.
We report preliminary results for the hadronic light-by-light scattering contribution to the muon anomalous magnetic moment. Several ensembles using 2+1 flavors of Mobius domain-wall fermions, generated by the RBC/UKQCD collaborations, are employed to take the continuum and infinite volume limits of finite volume lattice QED+QCD. We find $a_mu^{rm HLbL} = (7.41pm6.33)times 10^{-10}$
The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.
We report the first result for the hadronic light-by-light scattering contribution to the muon anomalous magnetic moment with all errors systematically controlled. Several ensembles using 2+1 flavors of physical mass Mobius domain-wall fermions, generated by the RBC/UKQCD collaborations, are employed to take the continuum and infinite volume limits of finite volume lattice QED+QCD. We find $a_mu^{rm HLbL} = 7.87(3.06)_text{stat}(1.77)_text{sys}times 10^{-10}$. Our value is consistent with previous model results and leaves little room for this notoriously difficult hadronic contribution to explain the difference between the Standard Model and the BNL experiment.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا