Do you want to publish a course? Click here

Neutron-proton pairing correlations in a single $l-$shell model

78   0   0.0 ( 0 )
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

The long standing problem of neutron-proton pairing correlations is revisited by employing the Hartree-Fock-Bogoliubov formalism with neutron-proton mixing in both the particle-hole and particle-hole channels. We compare numerical calculations performed within this method with an exact pairing model based on the $SO(8)$ algebra. The neutron-proton mixing is included in our calculations by performing rotations in the isospin space using the isocranking technique.



rate research

Read More

203 - Wenmei Guo , J. M. Dong , X. Shang 2018
The onset of 1S0 proton spin-singlet pairing in neutron-star matter is studied in the framework of the BCS theory including medium polarization effects. The strong three-body coupling of the diproton pairs with the dense neutron environment and the self-energy effects severely reduce the gap magnitude, so to reshape the scenario of the proton superfluid phase inside the star. The vertex corrections due to the medium polarization are attractive in all isospin-asymmetry range at low density and tend to favor the pairing in that channel. However quantitative estimates of their effect on the energy gap do not give significant changes. Implications of the new scenario on the role of pairing in neutron-star cooling is briefly discussed.
The self-energy effect on the neutron-proton (np) pairing gap is investigated up to the third order within the framework of the extend Bruecker-Hartree-Fock (BHF) approach combined with the BCS theory. The self-energy up to the second-order contribution turns out to reduce strongly the effective energy gap, while the emph{renormalization} term enhances it significantly. In addition, the effect of the three-body force on the np pairing gap is shown to be negligible. To connect the present results with the np pairing in finite nuclei, an effective density-dependent zero-range pairing force is established with the parameters calibrated to the microscopically calculated energy gap.
221 - A.V.Afanasjev 2012
Neutron-proton (np-) pairing is expected to play an important role in the N Z nuclei. In general, it can have isovector and isoscalar character. The existence of isovector np-pairing is well established. On the contrary, it is still debated whether there is an isoscalar np-pairing. The review of the situation with these two types of pairing with special emphasis on the isoscalar one is presented. It is concluded that there are no substantial evidences for the existence of isoscalar np-pairing.
We have performed shell-model calculations for the nucleus $^{137}$Xe, which was recently studied experimentally using the $^{136}$Xe($d,p$) reaction in inverse kinematics. The main aim of our study has been to investigate the single-neutron properties of the observed states, focusing attention on the spectroscopic factors. We have employed a realistic low-momentum two-body effective interaction derived from the CD-Bonn nucleon-nucleon potential that has already proved quite successful in describing the spectroscopic properties of nuclei in the $^{132}$Sn region. Comparison shows that our calculations reproduce very well the experimental excitation energies and yield spectroscopic factors that come close to those extracted from the data.
This paper starts with a brief historical overview of pairing in nuclei, which fulfills the purpose of properly framing the main subject. This concerns the pairing properties of a realistic shell-model effective interaction which has proved very successful in describing nuclei around doubly magic 132Sn. We focus attention on the two nuclei 134Te and 134Sn with two valence protons and neutrons, respectively. Our study brings out the key role of one particle-one hole excitations in producing a significant difference between proton and neutron pairing in this region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا