No Arabic abstract
Naturalness arguments applied to simple supersymmetric (SUSY) theories require a set of light higgsinos with mass $sim |mu|$ not too far from $m_h$. These models have an inverted electroweakino spectrum with $|mu| ll M_2$ which leads to a rather clean, hadronically quiet, same-sign diboson (SSdB) signature at hadron colliders arising from neutral-plus-charged wino pair production. We improve and expand our earlier studies of this signature for discovering SUSY in natural SUSY models by (i) including backgrounds which were not previously considered and which turn out to be significant, (ii) devising more efficient cuts to successfully contend with these larger backgrounds and determining the discovery reach and exclusion ranges for winos with these cuts, emphasizing projections for the updated integrated luminosity target for HL-LHC of 3 ab$^{-1}$, and (iii) emphasizing the utility of this channel for natural models without gaugino mass unification. We display the kinematic characteristics of the relatively jet-free same sign dilepton+$ ot!!!{E_T}$ events (from leptonic decays of both $W$s) and find that these are only weakly sensitive to the parent wino mass. We also examine the charge asymmetry in these events and show that its measurement can be used to check the consistency of the wino origin of the signal. Finally, we show that -- because the wino branching fractions in natural SUSY are essentially independent of details of the underlying model -- a determination of the rate for clean, same-sign dilepton events yields a better than 10% determination of the wino mass over the entire mass range where experiments at the HL-LHC can discover the wino signal.
In supersymmetric models with light higgsinos (which are motivated by electroweak naturalness arguments), the direct production of higgsino pairs may be difficult to search for at LHC due to the low visible energy release from their decays. However, the wino pair production reaction tw_2^pmtz_4to (W^pmtz_{1,2})+(W^pmtw_1^mp) also occurs at substantial rates and leads to final states including equally opposite-sign (OS) and same-sign (SS) diboson production. We propose a novel search channel for LHC14 based on the SS diboson plus missing E_T final state which contains only modest jet activity. Assuming gaugino mass unification, and an integrated luminosity > 100 fb^{-1}, this search channel provides a reach for SUSY well beyond that from usual gluino pair production.
We investigate the prospect of searching for new physics via the novel signature of same-sign diboson + ${E!!!!/}_{T}$ at current and future LHC. We study three new physics models: (i) natural SUSY models, (ii) type-III seesaw model and (iii) type-II seesaw/Georgi-Machacek model. In the first two class of models, this signature arises due to the presence of a singly-charged particle which has lifetime long enough to escape detection, while in the third model this signature originates resonantly from a doubly-charged particle produced along with two forward jets that, most likely, would escape detection. We analyze in great detail the discovery prospects of the signal in these three classes of models in the current as well as the upcoming runs of the LHC (such as HL-LHC and HE-LHC) by showing a distinction among these scenarios.
In SUSY models with heavy squarks and gaugino mass unification, the gaugino pair production reaction pp-> tw_1^pmtz_2 dominates gluino pair production for m_{tg}agt 1 TeV at LHC with sqrt{s}=14 TeV (LHC14). For this mass range, the two-body decays tw_1to Wtz_1 and tz_2to htz_1 are expected to dominate the chargino and neutralino branching fractions. By searching for ell bbar{b}+MET events from tw_1^pmtz_2 production, we show that LHC14 with 100 fb^{-1} of integrated luminosity becomes sensitive to chargino masses in the range m_{tw_1}sim 450-550 GeV corresponding to m_{tg}sim 1.5-2 TeV in models with gaugino mass unification. For 10^3 fb^{-1}, LHC14 is sensitive to the Wh channel for m_{tw_1}sim 300-800 GeV, corresponding to m_{tg}sim 1-2.8 TeV, which is comparable to the reach for gluino pair production followed by cascade decays. The Wh+MET search channel opens up a new complementary avenue for SUSY searches at LHC, and serves to point to SUSY as the origin of any new physics discovered via multijet and multilepton + MET channels.
We describe the calculation of the QCD contribution to same-sign $W$-pair production, $ppto e^pm u_e mu^pm u_mu jj$, resumming all contributions scaling as $alpha_W^4 alpha_s^{2+k}log^k(hat s/p_perp^2)$ [arXiv:2107.06818]. These leading logarithmic contributions are enhanced by typical cuts used for Vector Boson Scattering (VBS) studies. We show that while the cross sections are little affected by these corrections, other more exclusive observables relevant for experimental studies are affected more significantly.
We demonstrate that the LHC will be sensitive to quantum correlations between two quarks inside the proton. Same-sign W-boson pair production is the most promising channel for clear measurements of double parton scattering. The left-handed nature of the coupling between quarks and W-bosons makes it a prime probe to measure parton spin correlations. We perform a detailed analysis of double parton scattering, including relevant backgrounds. The analysis reveals that measurements comparing the rate at which two muons from W boson decays are produced in the same compared to opposite hemispheres are especially sensitive to spin correlations between two quarks inside the proton. We provide estimates of the significance of the measurements as a function of the integrated luminosity.