Emergent low-energy bound states in the two-orbital Hubbard model


Abstract in English

A repulsive Coulomb interaction between electrons in different orbitals in correlated materials can give rise to bound quasiparticle states. We study the non-hybridized two-orbital Hubbard model with intra (inter)-orbital interaction $U$ ($U_{12}$) and different band widths using an improved dynamical mean field theory numerical technique which leads to reliable spectra on the real energy axis directly at zero temperature. We find that a finite density of states at the Fermi energy in one band is correlated with the emergence of well defined quasiparticle states at excited energies $Delta=U-U_{12}$ in the other band. These excitations are inter-band holon-doublon bound states. At the symmetric point $U=U_{12}$, the quasiparticle peaks are located at the Fermi energy, leading to a simultaneous and continuous Mott transition settling a long-standing controversy.

Download