Do you want to publish a course? Click here

Resolved star formation and molecular gas properties of green valley galaxies: a first look with ALMA and MaNGA

77   0   0.0 ( 0 )
 Added by Lihwai Lin
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the role of cold gas in quenching star formation in the green valley by analysing ALMA $^{12}$CO (1-0) observations of three galaxies with resolved optical spectroscopy from the MaNGA survey. We present resolution-matched maps of the star formation rate and molecular gas mass. These data are used to calculate the star formation efficiency (SFE) and gas fraction ($f_{rm~gas}$) for these galaxies separately in the central `bulge regions and outer disks. We find that, for the two galaxies whose global specific star formation rate (sSFR) deviates most from the star formation main sequence, the gas fraction in the bulges is significantly lower than that in their disks, supporting an `inside-out model of galaxy quenching. For the two galaxies where SFE can be reliably determined in the central regions, the bulges and disks share similar SFEs. This suggests that a decline in $f_{rm~gas}$ is the main driver of lowered sSFR in bulges compared to disks in green valley galaxies. Within the disks, there exist common correlations between the sSFR and SFE and between sSFR and $f_{rm~gas}$ on kpc scales -- the local SFE or $f_{rm~gas}$ in the disks declines with local sSFR. Our results support a picture in which the sSFR in bulges is primarily controlled by $f_{rm~gas}$, whereas both SFE and $f_{rm~gas}$ play a role in lowering the sSFR in disks. A larger sample is required to confirm if the trend established in this work is representative of green valley as a whole.



rate research

Read More

We calculate the star formation quenching timescales in green valley galaxies at intermediate redshifts ($zsim0.5-1$) using stacked zCOSMOS spectra of different galaxy morphological types: spheroidal, disk-like, irregular and merger, dividing disk-like galaxies further into unbarred, weakly-barred and strongly-barred, assuming a simple exponentially-decaying star formation history model and based on the H$_{delta}$ absorption feature and the $4000$ AA ~break. We find that different morphological types present different star formation quenching timescales, reinforcing the idea that the galaxy morphology is strongly correlated with the physical processes responsible for quenching star formation. Our quantification of the star formation quenching timescale indicates that disks have typical timescales $60%$ to 5 times longer than that of galaxies presenting spheroidal, irregular or merger morphologies. Barred galaxies in particular present the slowest transition timescales through the green valley. This suggests that although secular evolution may ultimately lead to gas exhaustion in the host galaxy via bar-induced gas inflows that trigger star formation activity, secular agents are not major contributors in the rapid quenching of galaxies at these redshifts. Galaxy interaction, associated with the elliptical, irregular and merger morphologies contribute, to a more significant degree, to the fast transition through the green valley at these redshifts. In the light of previous works suggesting that both secular and merger processes are responsible for the star formation quenching at low redshifts, our results provide an explanation to the recent findings that star formation quenching happened at a faster pace at $zsim0.8$.
Bars inhabit the majority of local-Universe disk galaxies and may be important drivers of galaxy evolution through the redistribution of gas and angular momentum within disks. We investigate the star formation and gas properties of bars in galaxies spanning a wide range of masses, environments, and star formation rates using the MaNGA galaxy survey. Using a robustly-defined sample of 684 barred galaxies, we find that fractional (or scaled) bar length correlates with the hosts offset from the star-formation main sequence. Considering the morphology of the H$alpha$ emission we separate barred galaxies into different categories, including barred, ringed, and central configurations, together with H$alpha$ detected at the ends of a bar. We find that only low-mass galaxies host star formation along their bars, and that this is located predominantly at the leading edge of the bar itself. Our results are supported by recent simulations of massive galaxies, which show that the position of star formation within a bar is regulated by a combination of shear forces, turbulence and gas flows. We conclude that the physical properties of a bar are mostly governed by the existing stellar mass of the host galaxy, but that they also play an important role in the galaxys ongoing star formation.
$require{mediawiki-texvc}$The green valley (GV) represents an important transitional state from actively star-forming galaxies to passively evolving systems. Its traditional definition, based on colour, rests on a number of assumptions that can be subject to non-trivial systematics. In Angthopo et al. (2019), we proposed a new definition of the GV based on the 4000$AA$ break strength. In this paper, we explore in detail the properties of the underlying stellar populations by use of ~230 thousand high-quality spectra from the Sloan Digital Sky Survey (SDSS), contrasting our results with a traditional approach via dust-corrected colours. We explore high quality stacked SDSS spectra, and find a population trend that suggests a substantial difference between low- and high-mass galaxies, with the former featuring younger populations with star formation quenching, and the latter showing older (post-quenching) populations that include rejuvenation events. Subtle but measurable differences are found between a colour-based approach and our definition, especially as our selection of GV galaxies produces a cleaner stratification of the GV, with more homogeneous population properties within sections of the GV. Our definition based on 4000$AA$ break strength gives a clean representation of the transition to quiescence, easily measurable in the upcoming and future spectroscopic surveys.
We study radial profiles in H$alpha$ equivalent width and specific star formation rate (sSFR) derived from spatially-resolved SDSS-IV MaNGA spectroscopy to gain insight on the physical mechanisms that suppress star formation and determine a galaxys location in the SFR-$rm M_star$ diagram. Even within the star-forming `main sequence, the measured sSFR decreases with stellar mass, both in an integrated and spatially-resolved sense. Flat sSFR radial profiles are observed for $rm log(M_star/ M_odot) < 10.5$, while star-forming galaxies of higher mass show a significant decrease in sSFR in the central regions, a likely consequence of both larger bulges and an inside-out growth history. Our primary focus is the green valley, constituted by galaxies lying below the star formation main sequence, but not fully passive. In the green valley we find sSFR profiles that are suppressed with respect to star-forming galaxies of the same mass at all galactocentric distances out to 2 effective radii. The responsible quenching mechanism therefore appears to affect the entire galaxy, not simply an expanding central region. The majority of green valley galaxies of $rm log(M_star/ M_odot) > 10.0$ are classified spectroscopically as central low-ionisation emission-line regions (cLIERs). Despite displaying a higher central stellar mass concentration, the sSFR suppression observed in cLIER galaxies is not simply due to the larger mass of the bulge. Drawing a comparison sample of star forming galaxies with the same $rm M_star$ and $rm Sigma_{1~kpc}$ (the mass surface density within 1 kpc), we show that a high $rm Sigma_{1~kpc}$ is not a sufficient condition for determining central quiescence.
We present ~1 resolution (~2 kpc in the source plane) observations of the CO(1-0), CO(3-2), Halpha, and [N II] lines in the strongly-lensed z=2.26 star-forming galaxy SDSS J0901+1814. We use these observations to constrain the lensing potential of a foreground group of galaxies, and our source-plane reconstructions indicate that SDSS J0901+1814 is a nearly face-on (i~30 degrees) massive disk with r_{1/2}>~4 kpc for its molecular gas. Using our new magnification factors (mu_tot~30), we find that SDSS J0901+1814 has a star formation rate (SFR) of 268^{+63}_{-61} M_sun/yr, M_gas=(1.6^{+0.3}_{-0.2})x10^11x(alpha_CO/4.6) M_sun, and M_star=(9.5^{+3.8}_{-2.8})x10^10 M_sun, which places it on the star-forming galaxy main sequence. We use our matched high-angular resolution gas and SFR tracers (CO and Halpha, respectively) to perform a spatially resolved (pixel-by-pixel) analysis of SDSS J0901+1814 in terms of the Schmidt-Kennicutt relation. After correcting for the large fraction of obscured star formation (SFR_Halpha/SFR_TIR=0.054^{+0.015}_{-0.014}), we find SDSS J0901+1814 is offset from normal star-forming galaxies to higher star formation efficiencies independent of assumptions for the CO-to-H_2 conversion factor. Our mean best-fit index for the Schmidt-Kennicutt relation for SDSS J0901+1814, evaluated with different CO lines and smoothing levels, is n=1.54+/-0.13; however, the index may be affected by gravitational lensing, and we find n=1.24+/-0.02 when analyzing the source-plane reconstructions. While the Schmidt-Kennicutt index largely appears unaffected by which of the two CO transitions we use to trace the molecular gas, the source-plane reconstructions and dynamical modeling suggest that the CO(1-0) emission is more spatially extended than the CO(3-2) emission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا