Do you want to publish a course? Click here

Degeneracy of vector-channel spatial correlators in high temperature QCD

91   0   0.0 ( 0 )
 Added by Christian Rohrhofer
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We study spatial isovector meson correlators in $N_f=2$ QCD with dynamical domain-wall fermions on $32^3times 8$ lattices at temperatures up to 380 MeV with various quark masses. We measure the correlators of spin-one isovector operators including vector, axial-vector, tensor and axial-tensor. At temperatures above $T_c$ we observe an approximate degeneracy of the correlators in these channels, which is unexpected because some of them are not related under $SU(2)_L times SU(2)_R$ nor $U(1)_A$ symmetries. The observed approximate degeneracy suggests emergent $SU(2)_{CS}$ (chiral-spin) and $SU(4)$ symmetries at high $T$.



rate research

Read More

65 - C. Rohrhofer , Y. Aoki , G. Cossu 2017
We study spatial isovector meson correlators in $N_f=2$ QCD with dynamical domain-wall fermions on $32^3times 8$ lattices at temperatures $T=220-380$ MeV. We measure the correlators of spin-one ($J=1$) operators including vector, axial-vector, tensor and axial-tensor. Restoration of chiral $U(1)_A$ and $SU(2)_L times SU(2)_R$ symmetries of QCD implies degeneracies in vector--axial-vector ($SU(2)_L times SU(2)_R$) and tensor--axial-tensor ($U(1)_A$) pairs, which are indeed observed at temperatures above $T_c$. Moreover, we observe an approximate degeneracy of all $J=1$ correlators with increasing temperature. This approximate degeneracy suggests emergent $SU(2)_{CS}$ and $SU(4)$ symmeries at high temperatures, that mix left- and right-handed quarks.
119 - C. Rohrhofer , Y. Aoki , G. Cossu 2019
Based on a complete set of $J = 0$ and $J=1$ spatial isovector correlation functions calculated with $N_F = 2$ domain wall fermions we identify an intermediate temperature regime of $T sim 220 - 500$ MeV ($1.2T_c$--$2.8T_c$), where chiral symmetry is restored but the correlators are not yet compatible with a simple free quark behavior. More specifically, in the temperature range $T sim 220 - 500$ MeV we identify a multiplet structure of spatial correlators that suggests emergent $SU(2)_{CS}$ and $SU(4)$ symmetries, which are not symmetries of the free Dirac action. The symmetry breaking effects in this temperature range are less than 5%. Our results indicate that at these temperatures the chromo-magnetic interaction is suppressed and the elementary degrees of freedom are chirally symmetric quarks bound into color-singlet objects by the chromo-electric component of the gluon field. At temperatures between 500 and 660 MeV the emergent $SU(2)_{CS}$ and $SU(4)$ symmetries disappear and one observes a smooth transition to the regime above $T sim 1$ GeV where only chiral symmetries survive, which are finally compatible with quasi-free quarks.
We investigate the high-temperature phase of QCD using lattice QCD simulations with $N_f = 2$ dynamical Mobius domain-wall fermions. On generated configurations, we study the axial $U(1)$ symmetry, overlap-Dirac spectra, screening masses from mesonic correlators, and topological susceptibility. We find that some of the observables are quite sensitive to lattice artifacts due to a small violation of the chiral symmetry. For those observables, we reweight the Mobius domain-wall fermion determinant by that of the overlap fermion. We also check the volume dependence of observables. Our data near the chiral limit indicates a strong suppression of the axial $U(1)$ anomaly at temperatures $geq$ 220 MeV.
Thermal Hilbert moment QCD sum rules are used to obtain the temperature dependence of the hadronic parameters of charmonium in the vector channel, i.e. the $J$ / $psi$ resonance mass, coupling (leptonic decay constant), total width, and continuum threshold. The continuum threshold $s_0$, which signals the end of the resonance region and the onset of perturbative QCD (PQCD), behaves as in all other hadronic channels, i.e. it decreases with increasing temperature until it reaches the PQCD threshold $s_0 = 4 m_Q^2$, with $m_Q$ the charm quark mass, at $Tsimeq 1.22 T_c$. The rest of the hadronic parameters behave very differently from those of light-light and heavy-light quark systems. The $J$ / $psi$ mass is essentially constant in a wide range of temperatures, while the total width grows with temperature up to $T simeq 1.04 T_c$ beyond which it decreases sharply with increasing T. The resonance coupling is also initially constant and then begins to increase monotonically around $T simeq T_c$. This behaviour of the total width and of the leptonic decay constant provides a strong indication that the $J$ / $psi$ resonance might survive beyond the critical temperature for deconfinement.
70 - Tamas G. Kovacs 2019
At high temperature part of the spectrum of the quark Dirac operator is known to consist of localized states. This comes about because around the crossover temperature to the quark-gluon plasma localized states start to appear at the low end of the spectrum and as the system is further heated, states higher up in the spectrum also get localized. Since localization and the crossover to the chirally restored phase happen around the same temperature, the question of how the two phenomena are connected naturally arises. Here we speculate on the nature of possible gauge configurations that could support localized quark eigenmodes. In particular, by analyzing eigenmodes of the staggerd and overlap Dirac operator we show that the dilute gas of calorons in the high temperature phase is very unlikely to play a major role in localization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا