Do you want to publish a course? Click here

Coupled complex Ginzburg-Landau systems with saturable nonlinearity and asymmetric cross-phase modulation

115   0   0.0 ( 0 )
 Added by Robert Van Gorder
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We formulate and study dynamics from a complex Ginzburg-Landau system with saturable nonlinearity, including asymmetric cross-phase modulation (XPM) parameters. Such equations can model phenomena described by complex Ginzburg-Landau systems under the added assumption of saturable media. When the saturation parameter is set to zero, we recover a general complex cubic Ginzburg-Landau system with XPM. We first derive conditions for the existence of bounded dynamics, approximating the absorbing set for solutions. We use this to then determine conditions for amplitude death of a single wavefunction. We also construct exact plane wave solutions, and determine conditions for their modulational instability. In a degenerate limit where dispersion and nonlinearity balance, we reduce our system to a saturable nonlinear Schrodinger system with XPM parameters, and we demonstrate the existence and behavior of spatially heterogeneous stationary solutions in this limit. Using numerical simulations we verify the aforementioned analytical results, while also demonstrating other interesting emergent features of the dynamics, such as spatiotemporal chaos in the presence of modulational instability. In other regimes, coherent patterns including uniform states or banded structures arise, corresponding to certain stable stationary states. For sufficiently large yet equal XPM parameters, we observe a segregation of wavefunctions into different regions of the spatial domain, while when XPM parameters are large and take different values, one wavefunction may decay to zero in finite time over the spatial domain (in agreement with the amplitude death predicted analytically). While saturation will often regularize the dynamics, such transient dynamics can still be observed - and in some cases even prolonged - as the saturability of the media is increased, as the saturation may act to slow the timescale.



rate research

Read More

Amplitude death, which occurs in a system when one or more macroscopic wavefunctions collapse to zero, has been observed in mutually coupled solid-state lasers, analog circuits, and thermoacoustic oscillators, to name a few applications. While studies have considered amplitude death on oscillator systems and in externally forced complex Ginzburg-Landau systems, a route to amplitude death has not been studied in autonomous continuum systems. We derive simple analytic conditions for the onset of amplitude death of one macroscopic wavefunction in a system of two coupled complex Ginzburg-Landau equations with general nonlinear self- and cross-interaction terms. Our results give a more general theoretical underpinning for recent amplitude death results reported in the literature, and suggest an approach for tuning parameters in such systems so that they either permit or prohibit amplitude death of a wavefunction (depending on the application). Numerical simulation of the coupled complex Ginzburg-Landau equations, for examples including cubic, cubic-quintic, and saturable nonlinearities, is used to illustrate the analytical results.
It is known that after a particular distance of evolution in fiber lasers, two (input) asymmetric soliton like pulses emerge as two (output) symmetric pulses having same and constant energy. We report such a compensation technique in dispersion managed fiber lasers by means of a semi-analytical method known as collective variable approach (CVA) with including third-order dispersion (TOD). The minimum length of fiber laser, at which the output symmetric pulses are obtained from the input asymmetric ones, is calculated for each and every pulse parameters numerically by employing Runge-Kutta fourth order method. The impacts of intercore linear coupling, asymmetric nature of initial parameters and TOD on the evolution of pulse parameters and on the minimum length are also investigated. It is found that strong intercore linear coupling and asymmetric nature of input pulse parameters result in the reduction of fiber laser length. Also, the role of TOD tends to increase the width of the pulses as well as their energies. Besides, chaotic patterns and bifurcation points on the minimum length of the fiber owing to the impact of TOD are also reported in a nutshell.
After a brief introduction to the complex Ginzburg-Landau equation, some of its important features in two space dimensions are reviewed. A comprehensive study of the various phases observed numerically in large systems over the whole parameter space is then presented. The nature of the transitions between these phases is investigated and some theoretical problems linked to the phase diagram are discussed.
The dynamics and stability of continuous-wave and multi-pulse structures are studied theoretically, for a generalized model of passively mode-locked fiber laser with an arbitrary nonlinearity. The model is characterized by a complex Ginzburg-Landau equation with saturable nonlinearity of a general form ($I^m/(1+Gamma I)^n$), where $I$ is the field intensity, $m$ and $n$ are two positive real numbers and $Gamma$ is the optical field saturation power. The analysis of fixed-point solutions of the governing equations, reveals an interesting loci of singular points in the amplitude-frequency plane consisting of zero, one or two fixed points depending upon the values of $m$ and $n$. The stability of continuous waves is analyzed within the framework of the modulational-instability theory, results demonstrate a bifurcation in the continuous-wave amplitude growth rate and propagation constant characteristic of multi-periodic wave structures. In the full nonlinear regime these multi-periodic wave structures turn out to be multi-pulse trains, unveiled via numerical simulations of the model nonlinear equation the rich variety of which is highlighted by considering different combinations of values for the pair ($m$,$n$). Results are consistent with previous analyses of the dynamics of multi-pulse structures in several contexts of passively mode-locked lasers with saturable absorber, as well as with predictions about the existence of multi-pulse structures and bound-state solitons in optical fibers with strong optical nonlinearity such as cubic-quintic and saturable nonlinearities.
In the present work we illustrate that classical but nonlinear systems may possess features reminiscent of quantum ones, such as memory, upon suitable external perturbation. As our prototypical example, we use the two-dimensional complex Ginzburg-Landau equation in its vortex glass regime. We impose an external drive as a perturbation mimicking a quantum measurement protocol, with a given measurement rate (the rate of repetition of the drive) and mixing rate (characterized by the intensity of the drive). Using a variety of measures, we find that the system may or may not retain its coherence, statistically retrieving its original glass state, depending on the strength and periodicity of the perturbing field. The corresponding parametric regimes and the associated energy cascade mechanisms involving the dynamics of vortex waveforms and domain boundaries are discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا