Do you want to publish a course? Click here

Infrared Photometric Properties of 709 Candidate Stellar Bowshock Nebulae

69   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Arcuate infrared nebulae are ubiquitous throughout the Galactic Plane and are candidates for partial shells, bubbles, or bowshocks produced by massive runaway stars. We tabulate infrared photometry for 709 such objects using images from the Spitzer Space Telescope (SST), Wide-Field Infrared Explorer (WISE), and Herschel Space Observatory (HSO). Of the 709 objects identified at 24 or 22 microns, 422 are detected at the HSO 70 micron bandpass. Of these, only 39 are detected at HSO 160 microns. The 70 micron peak surface brightnesses are 0.5 to 2.5 Jy/square arcminute. Color temperatures calculated from the 24 micron to 70 micron ratios range from 80 K to 400 K. Color temperatures from 70 micron to 160 micron ratios are systematically lower, 40 K to 200 K. Both of these temperature are, on average, 75% higher than the nominal temperatures derived by assuming that dust is in steady-state radiative equilibrium. This may be evidence of stellar wind bowshocks sweeping up and heating --- possibly fragmenting but not destroying --- interstellar dust. Infrared luminosity correlates with standoff distance, R_0, as predicted by published hydrodynamical models. Infrared spectral energy distributions are consistent with interstellar dust exposed to a either single radiant energy density, U=10^3 to 10^5 (in more than half of the objects) or a range of radiant energy densities U_min=25 to U_max=10^3 to 10^5 times the mean interstellar value for the remainder. Hence, the central OB stars dominate the energetics, making these enticing laboratories for testing dust models in constrained radiation environments. SEDs are consistent with PAH fractions q_PAH <1% in most objects.



rate research

Read More

We identify 709 arc-shaped mid-infrared nebula in 24 micron Spitzer Space Telescope or 22 micron Wide Field Infrared Explorer surveys of the Galactic Plane as probable dusty interstellar bowshocks powered by early-type stars. About 20% are visible at 8 microns or shorter mid-infrared wavelengths as well. The vast majority (660) have no previous identification in the literature. These extended infrared sources are strongly concentrated near Galactic mid-Plane with an angular scale height of ~0.6 degrees. All host a symmetrically placed star implicated as the source of a stellar wind sweeping up interstellar material. These are candidate runaway stars potentially having high velocities in the reference frame of the local medium. Among the 286 objects with measured proper motions, we find an unambiguous excess having velocity vectors aligned with the infrared morphology --- kinematic evidence that many of these are runaway stars with large peculiar motions responsible for the bowshock signature. We discuss a population of in-situ bowshocks (103 objects) that face giant HII regions where the relative motions between the star and ISM may be caused by bulk outflows from an overpressured bubble. We also identify 58 objects that face 8 micron bright-rimmed clouds and apparently constitute a sub-class of in-situ bowshocks where the stellar wind interacts with a photo-evaporative flow from an eroding molecular cloud interface (i.e., PEF bowshocks). Orientations of the arcuate nebulae exhibit a correlation over small angular scales, indicating that external influences such as HII regions are responsible for producing some bowshock nebulae. However, the vast majority of this sample appear to be isolated (499 objects) from obvious external influences.
237 - Ryan L. Doering 2009
We report near-infrared photometric measurements of 35 Herbig Ae/Be candidate stars obtained with direct imaging and aperture photometry. Observations were made through the broadband J, H, and K filters, with each source imaged in at least one of the wavebands. We achieved subarcsecond angular resolution for all observations, providing us with the opportunity to search for close binary candidates and extended structure. The imaging revealed five newly identified binary candidates and one previously resolved T Tauri binary among the target sources with separations of <~2.5. Separate photometry is provided for each of the binary candidate stars. We detect one extended source that has been identified as a protoplanetary nebula. Comparing our magnitudes to past measurements yields significant differences for some sources, possibly indicating photometric variability. H-band finding charts for all of our sources are provided to aid follow-up high-resolution imaging.
Second only to initial mass, the rate of wind-driven mass loss determines the final mass of a massive star and the nature of its remnant. Motivated by the need to reconcile observational values and theory, we use a recently vetted technique to analyze the mass-loss rates in a sample of OB stars that generate bowshock nebulae. We measure peculiar velocities from new Gaia parallax and proper motion data and their spectral types from new optical and infrared spectroscopy. For our sample of 67 central stars in morphologically selected bowshocks nebulae, 67 are OB stars. The median peculiar velocity is 11 km/s, significantly smaller than classical `runaway star velocities. Mass-loss rates for these O and early B stars agree with recently lowered theoretical predictions, ranging from ~10^-7 Msun/yr for mid-O dwarfs to 10^-9 Msun/yr for late-O dwarfs---a factor of about 2.7 lower than the often-used Vink et al. (2001) formulation. Our results provide the first observational mass-loss rates for B0--B3 dwarfs and giants---10^-9 to 10^-8 Msun/yr. We find evidence for an increase in the mass-loss rates below a critical effective temperature, consistent with predictions of the bi-stability phenomenon in the range Teff=19,000--27,000 K. The sample exhibits a correlation between modified wind momentum and luminosity, consistent in slope but lower by 0.43 dex in magnitude compared to canonical wind-luminosity relations. We identify a small subset of objects deviating most significantly from theoretical expectations as probable radiation-driven bow wave nebulae by virtue of their low stellar-to-nebular luminosity ratios. For these, the inferred mass-loss rates must be regarded as upper limits.
We present near-IR (J,H,Ks) photometry for 27 of the 28 candidate Herbig Ae/Be stars in the Small and Large Magellanic Clouds identified via the EROS1 and EROS2 surveys as well as near-contemporaneous optical (H-alpha) spectroscopy for 21 of these 28 candidates. Our observations extend previous efforts to determine the evolutionary status of these objects. We compare the IR brightness and colors of a subset of our sample with archival ground-based IR data and find evidence of statistically significant photometric differences for ELHC 5, 7, 12, 18, and 21 in one or more filter. In all cases, these near-IR photometric variations exhibit a grey color as compared to earlier epoch data. The ~1 magnitude IR brightening and minimal change in the H-alpha emission strength we observe in ELHC 7 is consistent with previous claims that it is a UX Ori type HAe/Be star, which is occasionally obscurred by dust clouds. We also detect a ~1 magnitude IR brightening of ELHC 12, but find little evidence of a similar large-scale change in its H-alpha line strength, suggesting that its behavior could also be caused by a UX Ori-like event. The ~0.5 magnitude IR variability we observe for ELHC 21, which also exhibited little evidence of a change in its H-alpha emission strength, could conceivably be caused by a major recent enhancement in the density of the inner disk region of a classical Be star. We also report the first near-IR photometry for two ESHC stars and the first H-alpha spectroscopy for one ELHC and five ESHC stars. Although H-alpha emission is detected in all of these new observations, they do not exhibit a strong near-IR excess. It is therefore possible that many of these objects may be classical Be stars rather than Herbig Ae/Be stars.
We report the results of VERA multi-epoch VLBI 22 GHz water maser observations of S255IR-SMA1, a massive young stellar object located in the S255 star forming region. By annual parallax the source distance was measured as D = 1.78 +-0.12 kpc and the source systemic motion was (u alpha cos d, u d) = (-0.13 +- 0.20, -0.06 +- 0.27) mas yr-1. Masers appear to trace a U-shaped bow shock whose morphology and proper motions are well reproduced by a jet-driven outflow model with a jet radius of about 6 AU. The maser data, in the context of other works in the literature, reveal ejections from S255IR-SMA1 to be episodic, operating on timescales of ~1000 years.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا