A tight ErdH{o}s-Posa function for wheel minors


Abstract in English

Let $W_t$ denote the wheel on $t+1$ vertices. We prove that for every integer $t geq 3$ there is a constant $c=c(t)$ such that for every integer $kgeq 1$ and every graph $G$, either $G$ has $k$ vertex-disjoint subgraphs each containing $W_t$ as minor, or there is a subset $X$ of at most $c k log k$ vertices such that $G-X$ has no $W_t$ minor. This is best possible, up to the value of $c$. We conjecture that the result remains true more generally if we replace $W_t$ with any fixed planar graph $H$.

Download