Do you want to publish a course? Click here

Planning, Fast and Slow: A Framework for Adaptive Real-Time Safe Trajectory Planning

113   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Motion planning is an extremely well-studied problem in the robotics community, yet existing work largely falls into one of two categories: computationally efficient but with few if any safety guarantees, or able to give stronger guarantees but at high computational cost. This work builds on a recent development called FaSTrack in which a slow offline computation provides a modular safety guarantee for a faster online planner. We introduce the notion of meta-planning in which a refined offline computation enables safe switching between different online planners. This provides autonomous systems with the ability to adapt motion plans to a priori unknown environments in real-time as sensor measurements detect new obstacles, and the flexibility to maneuver differently in the presence of obstacles than they would in free space, all while maintaining a strict safety guarantee. We demonstrate the meta-planning algorithm both in simulation and in hardware using a small Crazyflie 2.0 quadrotor.



rate research

Read More

To move through the world, mobile robots typically use a receding-horizon strategy, wherein they execute an old plan while computing a new plan to incorporate new sensor information. A plan should be dynamically feasible, meaning it obeys constraints like the robots dynamics and obstacle avoidance; it should have liveness, meaning the robot does not stop to plan so frequently that it cannot accomplish tasks; and it should be optimal, meaning that the robot tries to satisfy a user-specified cost function such as reaching a goal location as quickly as possible. Reachability-based Trajectory Design (RTD) is a planning method that can generate provably dynamically-feasible plans. However, RTD solves a nonlinear polynmial optimization program at each planning iteration, preventing optimality guarantees; furthermore, RTD can struggle with liveness because the robot must brake to a stop when the solver finds local minima or cannot find a feasible solution. This paper proposes RTD*, which certifiably finds the globally optimal plan (if such a plan exists) at each planning iteration. This method is enabled by a novel Parallelized Constrained Bernstein Algorithm (PCBA), which is a branch-and-bound method for polynomial optimization. The contributions of this paper are: the implementation of PCBA; proofs of bounds on the time and memory usage of PCBA; a comparison of PCBA to state of the art solvers; and the demonstration of PCBA/RTD* on a mobile robot. RTD* outperforms RTD in terms of optimality and liveness for real-time planning in a variety of environments with randomly-placed obstacles.
Existing game-theoretic planning methods assume that the robot knows the objective functions of the other agents a priori while, in practical scenarios, this is rarely the case. This paper introduces LUCIDGames, an inverse optimal control algorithm that is able to estimate the other agents objective functions in real time, and incorporate those estimates online into a receding-horizon game-theoretic planner. LUCIDGames solves the inverse optimal control problem by recasting it in a recursive parameter-estimation framework. LUCIDGames uses an unscented Kalman filter (UKF) to iteratively update a Bayesian estimate of the other agents cost function parameters, improving that estimate online as more data is gathered from the other agents observed trajectories. The planner then takes account of the uncertainty in the Bayesian parameter estimates of other agents by planning a trajectory for the robot subject to uncertainty ellipse constraints. The algorithm assumes no explicit communication or coordination between the robot and the other agents in the environment. An MPC implementation of LUCIDGames demonstrates real-time performance on complex autonomous driving scenarios with an update frequency of 40 Hz. Empirical results demonstrate that LUCIDGames improves the robots performance over existing game-theoretic and traditional MPC planning approaches. Our implementation of LUCIDGames is available at https://github.com/RoboticExplorationLab/LUCIDGames.jl.
100 - Zhefan Xu , Di Deng , Yiping Dong 2021
Safe UAV navigation is challenging due to the complex environment structures, dynamic obstacles, and uncertainties from measurement noises and unpredictable moving obstacle behaviors. Although plenty of recent works achieve safe navigation in complex static environments with sophisticated mapping algorithms, such as occupancy map and ESDF map, these methods cannot reliably handle dynamic environments due to the mapping limitation from moving obstacles. To address the limitation, this paper proposes a trajectory planning framework to achieve safe navigation considering complex static environments with dynamic obstacles. To reliably handle dynamic obstacles, we divide the environment representation into static mapping and dynamic object representation, which can be obtained from computer vision methods. Our framework first generates a static trajectory based on the proposed iterative corridor shrinking algorithm. Then, reactive chance-constrained model predictive control with temporal goal tracking is applied to avoid dynamic obstacles with uncertainties. The simulation results in various environments demonstrate the ability of our algorithm to navigate safely in complex static environments with dynamic obstacles.
Wide area measurement system (WAMS) is one of the essential components in the future power system. To make WAMS construction plans, practical models of the power network observability, reliability, and underlying communication infrastructures need to be considered. To address this challenging problem, in this paper we propose a unified framework for WAMS planning to cover most realistic concerns in the construction process. The framework jointly optimizes the system construction cost, measurement reliability, and volume of synchrophasor data traffic resulting in a multi-objective optimization problem, which provides multiple Pareto optimal solutions to suit different requirements by the utilities. The framework is verified on two IEEE test systems. The simulation results demonstrate the trade-off relationships among the proposed objectives. Moreover, the proposed framework can develop optimal WAMS plans for full observability with minimal cost. This work develops a comprehensive framework for most practical WAMS construction designs.
Motion planners for mobile robots in unknown environments face the challenge of simultaneously maintaining both robustness against unmodeled uncertainties and persistent feasibility of the trajectory-finding problem. That is, while dealing with uncertainties, a motion planner must update its trajectory, adapting to the newly revealed environment in real-time; failing to do so may involve unsafe circumstances. Many existing planning algorithms guarantee these by maintaining the clearance needed to perform an emergency brake, which is itself a robust and persistently feasible maneuver. However, such maneuvers are not applicable for systems in which braking is impossible or risky, such as fixed-wing aircraft. To that end, we propose a real-time robust planner that recursively guarantees persistent feasibility without any need of braking. The planner ensures robustness against bounded uncertainties and persistent feasibility by constructing a loop of sequentially composed funnels, starting from the receding horizon local trajectorys forward reachable set. We implement the proposed algorithm for a robotic car tracking a speed-fixed reference trajectory. The experiment results show that the proposed algorithm can be run at faster than 16 Hz, while successfully keeping the system away from entering any dead-end, to maintain safety and feasibility.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا