No Arabic abstract
In this paper the method of simulated quantiles (MSQ) of Dominicy and Veredas (2013) and Dominick et al. (2013) is extended to a general multivariate framework (MMSQ) and to provide a sparse estimator of the scale matrix (sparse-MMSQ). The MSQ, like alternative likelihood-free procedures, is based on the minimisation of the distance between appropriate statistics evaluated on the true and synthetic data simulated from the postulated model. Those statistics are functions of the quantiles providing an effective way to deal with distributions that do not admit moments of any order like the $alpha$-Stable or the Tukey lambda distribution. The lack of a natural ordering represents the major challenge for the extension of the method to the multivariate framework. Here, we rely on the notion of projectional quantile recently introduced by Hallin etal. (2010) and Kong Mizera (2012). We establish consistency and asymptotic normality of the proposed estimator. The smoothly clipped absolute deviation (SCAD) $ell_1$--penalty of Fan and Li (2001) is then introduced into the MMSQ objective function in order to achieve sparse estimation of the scaling matrix which is the major responsible for the curse of dimensionality problem. We extend the asymptotic theory and we show that the sparse-MMSQ estimator enjoys the oracle properties under mild regularity conditions. The method is illustrated and its effectiveness is tested using several synthetic datasets simulated from the Elliptical Stable distribution (ESD) for which alternative methods are recognised to perform poorly. The method is then applied to build a new network-based systemic risk measurement framework. The proposed methodology to build the network relies on a new systemic risk measure and on a parametric test of statistical dominance.
The use of quantiles to obtain insights about multivariate data is addressed. It is argued that incisive insights can be obtained by considering directional quantiles, the quantiles of projections. Directional quantile envelopes are proposed as a way to condense this kind of information; it is demonstrated that they are essentially halfspace (Tukey) depth levels sets, coinciding for elliptic distributions (in particular multivariate normal) with density contours. Relevant questions concerning their indexing, the possibility of the reverse retrieval of directional quantile information, invariance with respect to affine transformations, and approximation/asymptotic properties are studied. It is argued that the analysis in terms of directional quantiles and their envelopes offers a straightforward probabilistic interpretation and thus conveys a concrete quantitative meaning; the directional definition can be adapted to elaborate frameworks, like estimation of extreme quantiles and directional quantile regression, the regression of depth contours on covariates. The latter facilitates the construction of multivariate growth charts---the question that motivated all the development.
Let $X_{nr}$ be the $r$th largest of a random sample of size $n$ from a distribution $F (x) = 1 - sum_{i = 0}^infty c_i x^{-alpha - i beta}$ for $alpha > 0$ and $beta > 0$. An inversion theorem is proved and used to derive an expansion for the quantile $F^{-1} (u)$ and powers of it. From this an expansion in powers of $(n^{-1}, n^{-beta/alpha})$ is given for the multivariate moments of the extremes ${X_{n, n - s_i}, 1 leq i leq k }/n^{1/alpha}$ for fixed ${bf s} = (s_1, ..., s_k)$, where $k geq 1$. Examples include the Cauchy, Student $t$, $F$, second extreme distributions and stable laws of index $alpha < 1$.
This paper proposes a maximum-likelihood approach to jointly estimate marginal conditional quantiles of multivariate response variables in a linear regression framework. We consider a slight reparameterization of the Multivariate Asymmetric Laplace distribution proposed by Kotz et al (2001) and exploit its location-scale mixture representation to implement a new EM algorithm for estimating model parameters. The idea is to extend the link between the Asymmetric Laplace distribution and the well-known univariate quantile regression model to a multivariate context, i.e. when a multivariate dependent variable is concerned. The approach accounts for association among multiple responses and study how the relationship between responses and explanatory variables can vary across different quantiles of the marginal conditional distribution of the responses. A penalized version of the EM algorithm is also presented to tackle the problem of variable selection. The validity of our approach is analyzed in a simulation study, where we also provide evidence on the efficiency gain of the proposed method compared to estimation obtained by separate univariate quantile regressions. A real data application is finally proposed to study the main determinants of financial distress in a sample of Italian firms.
Our goal is to estimate causal interactions in multivariate time series. Using vector autoregressive (VAR) models, these can be defined based on non-vanishing coefficients belonging to respective time-lagged instances. As in most cases a parsimonious causality structure is assumed, a promising approach to causal discovery consists in fitting VAR models with an additional sparsity-promoting regularization. Along this line we here propose that sparsity should be enforced for the subgroups of coefficients that belong to each pair of time series, as the absence of a causal relation requires the coefficients for all time-lags to become jointly zero. Such behavior can be achieved by means of l1-l2-norm regularized regression, for which an efficient active set solver has been proposed recently. Our method is shown to outperform standard methods in recovering simulated causality graphs. The results are on par with a second novel approach which uses multiple statistical testing.
In multivariate extreme value theory (MEVT), the focus is on analysis outside of the observable sampling zone, which implies that the region of interest is associated to high risk levels. This work provides tools to include directional notions into the MEVT, giving the opportunity to characterize the recently introduced directional multivariate quantiles (DMQ) at high levels. Then, an out-sample estimation method for these quantiles is given. A bootstrap procedure carries out the estimation of the tuning parameter in this multivariate framework and helps with the estimation of the DMQ. Asymptotic normality for the proposed estimator is provided and the methodology is illustrated with simulated data-sets. Finally, a real-life application to a financial case is also performed.