Edge plasma density fluctuations are shown to have a significant effect on the electron cyclotron resonance heating (ECRH) beam in the DIII-D tokamak. Experimental measurements of the ECRH deposition profile have been taken in three operating scenarios: L-mode, H-mode and negative triangularity. Each scenario corresponds to distinct turbulence characteristics in the edge region through which the beam must propagate. The measured ECRH deposition profile is significantly broadened by comparison to the profile predicted by the ray tracing code TORAY-GA and has been shown to scale with the severity of edge turbulence. Conventional ray tracing does not include the effects of turbulence and therefore a 3D full-wave cold plasma finite difference time domain code EMIT-3D is presented and used for the simulations. The turbulence is generated through the Hermes model in the BOUT++ framework which takes as input the measured time averaged electron density, temperature and magnetic field profiles for the specific shot in question. The simulated turbulence is constrained to match the experimentally measured (by use of the BES and DBS systems) correlation length and normalised fluctuation levels. The predictions of the beam broadening from the simulations are found to agree very well with the experimentally-observed broadening in all cases: L-mode, H-mode and negative triangularity. Due to the large gradients within the H-mode edge, the resolution uncertainty and error in the measurement from Thomson scattering and BES diagnostics result in a spread in the simulated turbulence amplitude. In light of this a parameter scan through the range in experimental diagnostic measurement uncertainty has been conducted to explore the impact on beam broadening predictions.