No Arabic abstract
We employ newly computed grids of spectra reprocessed by dust for estimating the total dust production rate (DPR) of carbon stars in the Small Magellanic Cloud (SMC). For the first time, the grids of spectra are computed as a function of the main stellar parameters, i.e. mass-loss rate, luminosity, effective temperature, current stellar mass and element abundances at the photosphere, following a consistent, physically grounded scheme of dust growth coupled with stationary wind outflow. The model accounts for the dust growth of various dust species formed in the circumstellar envelopes of carbon stars, such as carbon dust, silicon carbide and metallic iron. In particular, we employ some selected combinations of optical constants and grain sizes for carbon dust which have been shown to reproduce simultaneously the most relevant color-color diagrams in the SMC. By employing our grids of models, we fit the spectral energy distributions of $approx$3100 carbon stars in the SMC, consistently deriving some important dust and stellar properties, i.e. luminosities, mass-loss rates, gas-to-dust ratios, expansion velocities and dust chemistry. We discuss these properties and we compare some of them with observations in the Galaxy and LMC. We compute the DPR of carbon stars in the SMC, finding that the estimates provided by our method can be significantly different, between a factor $approx2-5$, than the ones available in the literature. Our grids of models, including the spectra and other relevant dust and stellar quantities, are publicly available at http://starkey.astro.unipd.it/web/guest/dustymodels
The Optical Gravitational Lensing Experiment identified over 1,800 carbon-rich Mira and semi-regular variables in the Small Magellanic Cloud. Multi-epoch infrared photometry reveals that the semi-regulars and Miras follow different sequences in color-color space when using colors sensitive to molecular absorption bands. The dustiest Miras have the strongest pulsation amplitudes and longest periods. Efforts to determine bolometric magnitudes reveal possible systematic errors with published bolometric corrections.
We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in Circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our recent dust growth description, coupled with a radiative transfer code to the CSEs of C-stars evolving along the TP-AGB, for which we compute spectra and colors. Then we compare our modeled colors in the near- and mid-infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing several data sets of optical constants for carbon dust available in the literature. Different assumptions adopted in our dust scheme change the typical size of the carbon grains produced. We constrain carbon dust properties by selecting the combination of grain size and optical constants which best reproduces several colors in the NIR and MIR at the same time. The different choices of optical properties and grain size lead to differences in the NIR and MIR colors greater than two magnitudes in some cases. We conclude that the complete set of observed NIR and MIR colors are best reproduced by small grains, with sizes between $sim$0.035 and $sim$0.12~$mu$m, rather than by large grains between $sim0.2$ and $0.7$~$mu$m. The inability of large grains to reproduce NIR and MIR colors seems independent of the adopted optical data set. We also find a possible trend of the grain size with mass-loss and/or carbon excess in the CSEs of these stars.
We compare theoretical dust yields for stars with mass 1 Msun < mstar < 8 Msun, and metallicities 0.001 < Z < 0.008 with observed dust production rates (DPR) by carbon- rich and oxygen-rich Asymptotic Giant Branch (C-AGB and O-AGB) stars in the Large and Small Magellanic Clouds (LMC, SMC). The measured DPR of C-AGB in the LMC are reproduced only if the mass loss from AGB stars is very efficient during the carbon-star stage. The same yields over-predict the observed DPR in the SMC, suggesting a stronger metallicity dependence of the mass-loss rates during the carbon- star stage. DPR of O-AGB stars suggest that rapid silicate dust enrichment occurs due to efficient hot-bottom-burning if mstar > 3 Msun and Z > 0.001. When compared to the most recent observations, our models support a stellar origin for the existing dust mass, if no significant destruction in the ISM occurs, with a contribution from AGB stars of 70% in the LMC and 15% in the SMC.
The properties of carbon stars in the Magellanic Clouds (MCs) and their total dust production rates are predicted by fitting their spectral energy distributions (SED) over pre-computed grids of spectra reprocessed by dust. The grids are calculated as a function of the stellar parameters by consistently following the growth for several dust species in their circumstellar envelopes, coupled with a stationary wind. Dust radiative transfer is computed taking as input the results of the dust growth calculations. The optical constants for amorphous carbon are selected in order to reproduce different observations in the infrared and optical bands of textit{Gaia} Data Release 2. We find a tail of extreme mass-losing carbon stars in the Large Magellanic Cloud (LMC) with low gas-to-dust ratios that is not present in the Small Magellanic Cloud (SMC). Typical gas-to-dust ratios are around $700$ for the extreme stars, but they can be down to $sim160$--$200$ and $sim100$ for a few sources in the SMC and in the LMC, respectively. The total dust production rate for the carbon star population is $sim 1.77pm 0.45times10^{-5}$~M$_odot$~yr$^{-1}$, for the LMC, and $sim 2.52pm 0.96 times 10^{-6}$~M$_odot$~yr$^{-1}$, for the SMC. The extreme carbon stars observed with the Atacama Large Millimeter Array and their wind speed are studied in detail. For the most dust-obscured star in this sample the estimated mass-loss rate is $sim 6.3 times 10^{-5}$~M$_odot$~yr$^{-1}$. The grids of spectra are available at: https://ambrananni085.wixsite.com/ambrananni/online-data-1 and included in the SED-fitting python package for fitting evolved stars https://github.com/s-goldman/Dusty-Evolved-Star-Kit .
We have observed a sample of 36 objects in the Small Magellanic Cloud (SMC) with the Infrared Spectrometer on the Spitzer Space Telescope. Nineteen of these sources are carbon stars. An examination of the near- and mid-infrared photometry shows that the carbon-rich and oxygen-rich dust sources follow two easily separated sequences. A comparison of the spectra of the 19 carbon stars in the SMC to spectra from the Infrared Space Observatory (ISO) of carbon stars in the Galaxy reveals significant differences. The absorption bands at 7.5 um and 13.7 um due to C2H2 are stronger in the SMC sample, and the SiC dust emission feature at 11.3 um is weaker. Our measurements of the MgS dust emission feature at 26-30 um are less conclusive, but this feature appears to be weaker in the SMC sample as well. All of these results are consistent with the lower metallicity in the SMC. The lower abundance of SiC grains in the SMC may result in less efficient carbon-rich dust production, which could explain the excess C2H2 gas seen in the spectra. The sources in the SMC with the strongest SiC dust emission tend to have redder infrared colors than the other sources in the sample, which implies more amorphous carbon, and they also tend to show stronger MgS dust emission. The weakest SiC emission features tend to be shifted to the blue; these spectra may arise from low-density shells with large SiC grains.