We demonstrate that a single zone furnace with a modified synthesis chamber design is sufficient to obtain metal (Fe, Co or Ni) filled carbon nanotubes (CNT) with high filling efficiency and controlled morphology. Samples are formed by pyrolysis of metallocenes, a synthesis technique that otherwise requires a dual zone furnace. Respective metallocene in all three cases are sublimed in powder form, a crucial factor for obtaining high filling efficiency. While Fe@CNT is routinely produced using this technique, well-formed Ni@CNT or Co@CNT samples are reported for the first time. This is achieved by sublimation of nickelocene (or cobaltocene) in combination with camphor. These samples exhibit some of the highest saturation magnetization (Ms) values, at least an order of magnitude higher than that reported for Ni or Co filled CNT, by aerosol assisted pyrolysis. The results also elucidate on why Ni or Co@CNT are relatively difficult to obtain by pyrolyzing powder metallocene alone. Overall, a systematic variation of synthesis parameters provides insights for obtaining narrow length and diameter distribution and reduced residue particles outside filled CNT - factors which are important for device related applications. Finally, the utility of this technique is demonstrated by obtaining highly aligned forest of Fe2O3@CNT, wherein Fe2O3 is a functional magnetic oxide relevant to spintronics and battery applications.