Do you want to publish a course? Click here

Ergoregion in Metamaterials Mimicking a Kerr Spacetime

256   0   0.0 ( 0 )
 Added by Paulo Brand\\~ao
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a simple singularity-free coordinate transformation that could be implemented in Maxwells equations in order to simulate one aspect of a Kerr black hole. Kerr black holes are known to force light to rotate in a predetermined direction inside the ergoregion. By making use of cosmological analogies and the theoretical framework of transformation optics, we have designed a metamaterial that can make light behave as if it is propagating around a rotating cosmological massive body. We present numerical simulations involving incident Gaussian beams interacting with the materials to verify our predictions. The ergoregion is defined through the dispersion curve of the off-axis permittivities components.



rate research

Read More

This paper presents the authors vision of the emerging field of spacetime metamaterials in a cohesive and pedagogical perspective. For this purpose, it systematically builds up the physics, modeling and applications of these media upon the foundation of their pure-space and pure-time counterparts.
This paper explores the neutral particle motion and collisional Penrose process in ergoregion of the braneworld Kerr black hole. We analyze the properties of event horizon, ergosphere and static limit. The particle collision in ergoregion via the Penrose process is investigated. Furthermore, we study the negative energy states and show that the sign of particle energy can be uniquely determined by the sign of angular momentum. In addition, we study the Wald inequality to determine the limits of energy extraction via the Penrose process and also find lower bound of the irreducible mass. The expression for the efficiency of energy extraction from the brane Kerr black hole is found. Finally, we compare our results with that obtained from the Kerr black hole. It is concluded that efficiency increases with the increase of rotation as well as brane parameter b of the black hole.
187 - Christophe Caloz 2016
Metamaterials represent one of the most vibrant fields of modern science and technology. They are generally dispersive structures in the direct and reciprocal space and time domains. Upon this consideration, I overview here a number of metamaterial innovations developed by colleagues and myself in the holistic framework of space and time dispersion engineering. Moreover, I provide some thoughts regarding the future perspectives of the area.
95 - G. Menezes 2017
We consider the entanglement dynamics between two-level atoms in a rotating black hole background. In our model the two-atom system is envisaged as an open system coupled with a massless scalar field prepared in one of the physical vacuum states of interest. We employ the quantum master equation in the Born-Markov approximation in order to describe the time evolution of the atomic subsystem. We investigate two different states of motion for the atoms, namely static atoms and also stationary atoms with zero angular momentum. The purpose of this work is to expound the impact on the creation of entanglement coming from the combined action of the different physical processes underlying the Hawking effect and the Unruh-Starobinskii effect. We demonstrate that, in the scenario of rotating black holes, the degree of quantum entanglement is significantly modified due to the phenomenon of superradiance in comparison with the analogous cases in a Schwarzschild spacetime. In the perspective of a zero angular momentum observer (ZAMO), one is allowed to probe entanglement dynamics inside the ergosphere, since static observers cannot exist within such a region. On the other hand, the presence of superradiant modes could be a source for violation of complete positivity. This is verified when the quantum field is prepared in the Frolov-Thorne vacuum state. In this exceptional situation, we raise the possibility that the loss of complete positivity is due to the breakdown of the Markovian approximation, which means that any arbitrary physically admissible initial state of the two atoms would not be capable to hold, with time evolution, its interpretation as a physical state inasmuch as negative probabilities are generated by the dynamical map.
We investigate the late-time tail of the retarded Green function for the dynamics of a linear field perturbation of Kerr spacetime. We develop an analytical formalism for obtaining the late-time tail up to arbitrary order for general integer spin of the field. We then apply this formalism to obtain the details of the first five orders in the late-time tail of the Green function for the case of a scalar field: to leading order we recover the known power law tail $t^{-2ell-3}$, and at third order we obtain a logarithmic correction, $t^{-2ell-5}ln t$, where $ell$ is the field multipole.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا