This paper formulates an utility indifference pricing model for investors trading in a discrete time financial market under non-dominated model uncertainty. The investors preferences are described by strictly increasing concave random functions defined on the positive axis. We prove that under suitable conditions the multiple-priors utility indifference prices of a contingent claim converge to its multiple-priors superreplication price. We also revisit the notion of certainty equivalent for random utility functions and establish its relation with the absolute risk aversion.
This paper considers utility indifference valuation of derivatives under model uncertainty and trading constraints, where the utility is formulated as an additive stochastic differential utility of both intertemporal consumption and terminal wealth, and the uncertain prospects are ranked according to a multiple-priors model of Chen and Epstein (2002). The price is determined by two optimal stochastic control problems (mixed with optimal stopping time in the case of American option) of forward-backward stochastic differential equations. By means of backward stochastic differential equation and partial differential equation methods, we show that both bid and ask prices are closely related to the Black-Scholes risk-neutral price with modified dividend rates. The two prices will actually coincide with each other if there is no trading constraint or the model uncertainty disappears. Finally, two applications to European option and American option are discussed.
In this paper we study the pricing and hedging of structured products in energy markets, such as swing and virtual gas storage, using the exponential utility indifference pricing approach in a general incomplete multivariate market model driven by finitely many stochastic factors. The buyer of such contracts is allowed to trade in the forward market in order to hedge the risk of his position. We fully characterize the buyers utility indifference price of a given product in terms of continuous viscosity solutions of suitable nonlinear PDEs. This gives a way to identify reasonable candidates for the optimal exercise strategy for the structured product as well as for the corresponding hedging strategy. Moreover, in a model with two correlated assets, one traded and one nontraded, we obtain a representation of the price as the value function of an auxiliary simpler optimization problem under a risk neutral probability, that can be viewed as a perturbation of the minimal entropy martingale measure. Finally, numerical results are provided.
We examine Kreps (2019) conjecture that optimal expected utility in the classic Black--Scholes--Merton (BSM) economy is the limit of optimal expected utility for a sequence of discrete-time economies that approach the BSM economy in a natural sense: The $n$th discrete-time economy is generated by a scaled $n$-step random walk, based on an unscaled random variable $zeta$ with mean zero, variance one, and bounded support. We confirm Kreps conjecture if the consumers utility function $U$ has asymptotic elasticity strictly less than one, and we provide a counterexample to the conjecture for a utility function $U$ with asymptotic elasticity equal to 1, for $zeta$ such that $E[zeta^3] > 0.$
We propose a model for an insurance loss index and the claims process of a single insurance company holding a fraction of the total number of contracts that captures both ordinary losses and losses due to catastrophes. In this model we price a catastrophe derivative by the method of utility indifference pricing. The associated stochastic optimization problem is treated by techniques for piecewise deterministic Markov processes. A numerical study illustrates our results.
This paper considers exponential utility indifference pricing for a multidimensional non-traded assets model subject to inter-temporal default risk, and provides a semigroup approximation for the utility indifference price. The key tool is the splitting method, whose convergence is proved based on the Barles-Souganidis monotone scheme, and the convergence rate is derived based on Krylovs shaking the coefficients technique. We apply our methodology to study the counterparty risk of derivatives in incomplete markets.
Romain Blanchard
,Laurence Carassus
.
(2017)
.
"Convergence of utility indifference prices to the superreplication price in a multiple-priors framework"
.
Laurence Carassus
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا