No Arabic abstract
The short-spacing problem describes the inherent inability of radio-interferometric arrays to measure the integrated flux and structure of diffuse emission associated with extended sources. New interferometric arrays, such as SKA, require solutions to efficiently combine interferometer and single-dish data. We present a new and open source approach for merging single-dish and cleaned interferometric data sets requiring a minimum of data manipulation while offering a rigid flux determination and full high angular resolution. Our approach combines single-dish and cleaned interferometric data in the image domain. This approach is tested for both Galactic and extragalactic HI data sets. Furthermore, a quantitative comparison of our results to commonly used methods is provided. Additionally, for the interferometric data sets of NGC4214 and NGC5055, we study the impact of different imaging parameters as well as their influence on the combination for NGC4214. The approach does not require the raw data (visibilities) or any additional special information such as antenna patterns. This is advantageous especially in the light of upcoming radio surveys with heterogeneous antenna designs.
The Epoch of Reionisation (EoR) is the period within which the neutral universe transitioned to an ionised one. This period remains unobserved using low-frequency radio interferometers which target the 21 cm signal of neutral hydrogen emitted in this era. The Murchison Widefield Array (MWA) radio telescope was built with the detection of this signal as one of its major science goals. One of the most significant challenges towards a successful detection is that of calibration, especially in the presence of the Earths ionosphere. By introducing refractive source shifts, distorting source shapes and scintillating flux densities, the ionosphere is a major nuisance in low-frequency radio astronomy. We introduce SIVIO, a software tool developed for simulating observations of the MWA through different ionospheric conditions estimated using thin screen approximation models and propagated into the visibilities. This enables us to directly assess the impact of the ionosphere on observed EoR data and the resulting power spectra. We show that the simulated data captures the dispersive behaviour of ionospheric effects. We show that the spatial structure of the simulated ionospheric media is accurately reconstructed either from the resultant source positional offsets or from parameters evaluated during the data calibration procedure. In turn, this will inform on the best strategies of identifying and efficiently eliminating ionospheric contamination in EoR data moving into the Square Kilometre Array era.
We introduce a new pipeline for analyzing and mitigating radio frequency interference (RFI), which we call Sky-Subtracted Incoherent Noise Spectra (SSINS). SSINS is designed to identify and remove faint RFI below the single baseline thermal noise by employing a frequency-matched detection algorithm on baseline-averaged amplitudes of time-differenced visibilities. We demonstrate the capabilities of SSINS using the Murchison Widefield Array (MWA) in Western Australia. We successfully image aircraft flying over the array via digital television (DTV) reflection detected using SSINS and summarize an RFI occupancy survey of MWA Epoch of Reionization data. We describe how to use SSINS with new data using a documented, publicly available implementation with comprehensive usage tutorials.
New and upcoming radio interferometers will produce unprecedented amounts of data that demand extremely powerful computers for processing. This is a limiting factor due to the large computational power and energy costs involved. Such limitations restrict several key data processing steps in radio interferometry. One such step is calibration where systematic errors in the data are determined and corrected. Accurate calibration is an essential component in reaching many scientific goals in radio astronomy and the use of consensus optimization that exploits the continuity of systematic errors across frequency significantly improves calibration accuracy. In order to reach full consensus, data at all frequencies need to be calibrated simultaneously. In the SKA regime, this can become intractable if the available compute agents do not have the resources to process data from all frequency channels simultaneously. In this paper, we propose a multiplexing scheme that is based on the alternating direction method of multipliers (ADMM) with cyclic updates. With this scheme, it is possible to simultaneously calibrate the full dataset using far fewer compute agents than the number of frequencies at which data are available. We give simulation results to show the feasibility of the proposed multiplexing scheme in simultaneously calibrating a full dataset when a limited number of compute agents are available.
High-resolution astronomical imaging at sub-GHz radio frequencies has been available for more than 15 years, with the VLA at 74 and 330 MHz, and the GMRT at 150, 240, 330 and 610 MHz. Recent developments include wide-bandwidth upgrades for VLA and GMRT, and commissioning of the aperture-array-based, multi-beam telescope LOFAR. A common feature of these telescopes is the necessity to deconvolve the very many detectable sources within their wide fields-of-view and beyond. This is complicated by gain variations in the radio signal path that depend on viewing direction. One such example is phase errors due to the ionosphere. Here I discuss the inner workings of SPAM, a set of AIPS-based data reduction scripts in Python that includes direction-dependent calibration and imaging. Since its first version in 2008, SPAM has been applied to many GMRT data sets at various frequencies. Many valuable lessons were learned, and translated into various SPAM software modifications. Nowadays, semi-automated SPAM data reduction recipes can be applied to almost any GMRT data set, yielding good quality continuum images comparable with (or often better than) hand-reduced results. SPAM is currently being migrated from AIPS to CASA with an extension to handle wide bandwidths. This is aimed at providing users of the VLA low-band system and the upcoming wide-bandwidth GMRT with the necessary data reduction tools.
Hydrogen intensity mapping is a new field in astronomy that promises to make three-dimensional maps of the matter distribution of the Universe using the redshifted $21,textrm{cm}$ line of neutral hydrogen gas (HI). Several ongoing and upcoming radio interferometers, such as Tianlai, CHIME, HERA, HIRAX, etc. are using this technique. These instruments are designed to map large swaths of the sky by drift scanning over periods of many months. One of the challenges of the observations is that the daytime data is contaminated by strong radio signals from the Sun. In the case of Tianlai, this results in almost half of the measured data being unusable. We try to address this issue by developing an algorithm for solar contamination removal (AlgoSCR) from the radio data. The algorithm is based on an eigenvalue analysis of the visibility matrix, and hence is applicable only to interferometers. We apply AlgoSCR to simulated visibilities, as well as real daytime data from the Tianlai dish array. The algorithm can remove most of the solar contamination without seriously affecting other sky signals and thus makes the data usable for certain applications.