Do you want to publish a course? Click here

Emergence and persistence of flow inhomogeneities in the yielding and fluidization of dense soft solids

75   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The response to shear of the dense soft solids features a stress overshoot and a persistent shear banding before reaching a homogeneously flowing state. In 3D large scale simulations we analyze the time required for the onset of homogeneous flow, the normal stresses and structural signatures at different shear rates and in different flow geometries, finding that the stress overshoot, the shear band formation and its persistence are controlled by the presence of overconstrained microscopic domains in the initially solid samples. Being able to identify such domains in our model by prevalently icosahedrally packed regions, we show that they allow for stress accumulation during the stress overshoot and that their structural reorganization controls the emergence and the persistence of the shear banding.

rate research

Read More

The holographic principle has proven successful in linking seemingly unrelated problems in physics; a famous example is the gauge-gravity duality. Recently, intriguing correspondences between the physics of soft matter and gravity are emerging, including strong similarities between the rheology of amorphous solids, effective field theories for elasticity and the physics of black holes. However, direct comparisons between theoretical predictions and experimental/simulation observations remain limited. Here, we study the effects of non-linear elasticity on the mechanical and thermodynamic properties of amorphous materials responding to shear, using effective field and gravitational theories. The predicted correlations among the non-linear elastic exponent, the yielding strain/stress and the entropy change due to shear are supported qualitatively by simulations of granular matter models. Our approach opens a path towards understanding complex mechanical responses of amorphous solids, such as mixed effects of shear softening and shear hardening, and offers the possibility to study the rheology of solid states and black holes in a unified framework.
130 - Srikanth Sastry 2020
Understanding the mechanical response and failure of solids is of obvious importance in their use as structural materials. The nature of plastic deformation leading to yielding of amorphous solids has been vigorously pursued in recent years. Investigations employing both unidirectional and cyclic deformation protocols reveal a strong dependence of yielding behaviour on the degree of annealing. Below a threshold degree of annealing, the nature of yielding changes qualitatively, to progressively more discontinuous yielding. Theoretical investigations of yielding in amorphous solids have almost exclusively focused on yielding under unidirectional deformation, but cyclic deformation reveals several interesting features that remain largely un-investigated. Focusing on athermal cyclic deformation, I investigate a family of models based on an energy landscape description. These models reproduce key interesting features observed in simulations, and provide an interpretation for the intriguing presence of a threshold energy.
The relation between elasticity and yielding is investigated in a model polymer solid by Molecular-Dynamics simulations. By changing the bending stiffness of the chain and the bond length, semicrystalline and disordered glassy polymers - both with bond disorder - as well as nematic glassy polymers with bond ordering are obtained. It is found that in systems with bond disorder the ratio Ty/G between the shear yield strength Ty and the shear modulus G is close to the universal value of the atomic metallic glasses. The increase of the local nematic order in glasses leads to the increase of the shear modulus and the decrease of the shear yield strength, as observed in experiments on nematic thermosets. A tentative explanation of the subsequent reduction of the ratio Ty/G in terms of the distributions of the per-monomer stress is offered.
It is well known that jammed soft materials will flow if sheared above their yield stress - think mayonnaise spread on bread - but a complete microscopic description of this seemingly sim- ple process has yet to emerge. What remains elusive is a microscopic framework that explains the macroscopic flow, derived from a 3-D spatially resolved analysis of the dynamics of the droplets or particles that compose the soft material. By combining confocal-rheology experiments on compressed emulsions and numerical simulations, we unravel that the primary microscopic mechanisms for flow are strongly influenced by the rate of the imposed deformation. When shearing fast, small coordinated clusters of droplets move collectively as in a conga line, while at low rates the flow emerges from bursts of droplet rearrangements, correlated over large domains. These regions exhibit complex spatio-temporal correlation patterns that reflect the long range elasticity embedded in the jammed material. These results identify the three-dimensional structure of microscopic rearrangements within sheared soft solids, revealing that the characteristic shape and dynamics of these structures are strongly determined by the rate of the external shear.
The rheology of pressure-driven flows of two-dimensional dense monodisperse emulsions in neutral wetting microchannels is investigated by means of mesoscopic lattice simulations, capable of handling large collections of droplets, in the order of several hundreds. The simulations reveal that the fluidization of the emulsion proceeds through a sequence of discrete steps, characterized by yielding events whereby layers of droplets start rolling over each other, thus leading to sudden drops of the relative effective viscosity. It is shown that such discrete fluidization is robust against loss of confinement, namely it persists also in the regime of small ratios of the droplet diameter over the microchannel width. We also develop a simple phenomenological model which predicts a linear relation between the relative effective viscosity of the emulsion and the product of the confinement parameter (global size of the device over droplet radius) and the viscosity ratio between the disperse and continuous phases. The model shows excellent agreement with the numerical simulations. The present work offers new insights to enable the design of microfluidic scaffolds for tissue engineering applications and paves the way to detailed rheological studies of soft-glassy materials in complex geometries.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا