Do you want to publish a course? Click here

OGLE-2017-BLG-0173Lb: Low Mass-Ratio Planet in a Hollywood Microlensing Event

73   0   0.0 ( 0 )
 Added by Kyu-Ha Hwang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present microlensing planet OGLE-2017-BLG-0173Lb, with planet-host mass ratio either $qsimeq 2.5times 10^{-5}$ or $qsimeq 6.5times 10^{-5}$, the lowest or among the lowest ever detected. The planetary perturbation is strongly detected, $Deltachi^2sim 10,000$, because it arises from a bright (therefore, large) source passing over and enveloping the planetary caustic: a so-called Hollywood event. The factor $sim 2.5$ offset in $q$ arises because of a previously unrecognized discrete degeneracy between Hollywood events in which the caustic is fully enveloped and those in which only one flank is enveloped, which we dub Cannae and von Schlieffen, respectively. This degeneracy is accidental in that it arises from gaps in the data. Nevertheless, the fact that it appears in a $Deltachi^2=10,000$ planetary anomaly is striking. We present a simple formalism to estimate the sensitivity of other Hollywood events to planets and show that they can lead to detections close to, but perhaps not quite reaching, the Earth/Sun mass ratio of $3times 10^{-6}$. This formalism also enables an analytic understanding of the factor $sim 2.5$ offset in $q$ between the Cannae and von Schlieffen solutions. The Bayesian estimates for the host-mass, system distance, and planet-host projected separation are $M=0.39^{+0.40}_{-0.24},M_odot$, $D_L=4.8^{+1.5}_{-1.8},kpc$, and $a_perp=3.8pm 1.6,au$. The two estimates of the planet mass are $m_p=3.3^{+3.8}_{-2.1},M_oplus$ and $m_p=8^{+11}_{-6},M_oplus$. The measured lens-source relative proper motion $mu=6,masyr$ will permit imaging of the lens in about 15 years or at first light on adaptive-optics imagers on next-generation telescopes. These will allow to measure the host mass but probably cannot resolve the planet-host mass-ratio degeneracy.



rate research

Read More

We report a giant exoplanet discovery in the microlensing event OGLE-2017-BLG-1049, which is a planet-host star mass ratio of $q=9.53pm0.39times10^{-3}$ and has a caustic crossing feature in the Korea Microlensing Telescope Network (KMTNet) observations. The caustic crossing feature yields an angular Einstein radius of $theta_{rm E}=0.52 pm 0.11 {rm mas}$. However, the microlens parallax is not measured because of the time scale of the event $t_{rm E}simeq 29 {rm days}$, which is not long enough in this case to determine the microlens parallax. Thus, we perform a Bayesian analysis to estimate physical quantities of the lens system. From this, we find that the lens system has a star with mass $M_{rm h}=0.55^{+0.36}_{-0.29} M_{odot}$ hosting a giant planet with $M_{rm p}=5.53^{+3.62}_{-2.87} M_{rm Jup}$, at a distance of $D_{rm L}=5.67^{+1.11}_{-1.52} {rm kpc}$. The projected star-planet separation in units of the Einstein radius $(theta_{rm E})$ corresponding to the total mass of the lens system is $a_{perp}=3.92^{+1.10}_{-1.32} rm{au}$. This means that the planet is located beyond the snow line of the host. The relative lens-source proper motion is $mu_{rm rel}sim 7 rm{mas yr^{-1}}$, thus the lens and source will be separated from each other within 10 years. Then the flux of the host star can be measured by a 30m class telescope with high-resolution imaging in the future, and thus its mass can be determined.
We report the discovery of microlensing planet OGLE-2017-BLG-0373Lb. We show that while the planet-host system has an unambiguous microlens topology, there are two geometries within this topology that fit the data equally well, which leads to a factor 2.5 difference in planet-host mass ratio, i.e., $q=1.5times 10^{-3}$ vs. $q=0.6times 10^{-3}$. We show that this is an accidental degeneracy in the sense that it is due to a gap in the data. We dub it the caustic-chirality degeneracy. We trace the mathematical origins of this degeneracy, which should enable similar degenerate solutions to be easily located in the future. A Bayesian estimate, based on a Galactic model, yields a host mass $M=0.25^{+0.30}_{-0.15} M_odot$ at a distance $D_L=5.9^{+1.3}_{-1.95}$ kpc. The lens-source relative proper motion is relatively fast, $mu=9$ mas/yr, which implies that the host mass and distance can be determined by high-resolution imaging after about 10 years. The same observations could in principle resolve the discrete degeneracy in $q$, but this will be more challenging.
We report the analysis of planetary microlensing event OGLE-2018-BLG-1185, which was observed by a large number of ground-based telescopes and by the $Spitzer$ Space Telescope. The ground-based light curve indicates a low planet-host star mass ratio of $q = (6.9 pm 0.2) times 10^{-5}$, which is near the peak of the wide-orbit exoplanet mass-ratio distribution. We estimate the host star and planet masses with a Bayesian analysis using the measured angular Einstein radius under the assumption that stars of all masses have an equal probability to host this planet. The flux variation observed by $Spitzer$ was marginal, but still places a constraint on the microlens parallax. Imposing a conservative constraint that this flux variation should be $Delta f_{rm Spz} < 4$ instrumental flux units indicates a host mass of $M_{rm host} = 0.37^{+0.35}_{-0.21} M_odot$ and a planet mass of $m_{rm p} = 8.4^{+7.9}_{-4.7} M_oplus$. A Bayesian analysis including the full parallax constraint from $Spitzer$ suggests smaller host star and planet masses of $M_{rm host} = 0.091^{+0.064}_{-0.018} M_odot$ and $m_{rm p} = 2.1^{+1.5}_{-0.4} M_oplus$, respectively. Future high-resolution imaging observations with $HST$ or ELTs could distinguish between these two scenarios and help to reveal the planetary system properties in more detail.
106 - C. Han , Y. Hirao , A. Udalski 2018
We report the discovery of a planetary system in which a super-earth orbits a late M-dwarf host. The planetary system was found from the analysis of the microlensing event OGLE-2017-BLG-0482, wherein the planet signal appears as a short-term anomaly to the smooth lensing light curve produced by the host. Despite its weak signal and short duration, the planetary signal was firmly detected from the dense and continuous coverage by three microlensing surveys. We find a planet/host mass ratio of $qsim 1.4times 10^{-4}$. We measure the microlens parallax $pi_{rm E}$ from the long-term deviation in the observed lensing light curve, but the angular Einstein radius $theta_{rm E}$ cannot be measured because the source trajectory did not cross the planet-induced caustic. Using the measured event timescale and the microlens parallax, we find that the masses of the planet and the host are $M_{rm p}=9.0_{-4.5}^{+9.0} M_oplus$ and $M_{rm host}=0.20_{-0.10}^{+0.20} M_odot$, respectively, and the projected separation between them is $a_perp=1.8_{-0.7}^{+0.6}$ au. The estimated distance to the lens is $D_{rm L}=5.8_{-2.1}^{+1.8}$ kpc. The discovery of the planetary system demonstrates that microlensing provides an important method to detect low-mass planets orbiting low-mass stars.
We report the discovery of a cold Super-Earth planet (m_p=4.4 +/- 0.5 M_Earth) orbiting a low-mass (M=0.23 +/- 0.03 M_Sun) M dwarf at projected separation a_perp = 1.18 +/- 0.10 AU, i.e., about 1.9 times the snow line. The system is quite nearby for a microlensing planet, D_Lens = 0.86 +/- 0.09 kpc. Indeed, it was the large lens-source relative parallax pi_rel=1.0 mas (combined with the low mass M) that gave rise to the large, and thus well-measured, microlens parallax that enabled these precise measurements. OGLE-2017-BLG-1434Lb is the eighth microlensing planet with planet-host mass ratio q < 1 * 10^-4. We apply a new planet-detection sensitivity method, which is a variant of V/V_max, to seven of these eight planets to derive the mass-ratio function in this regime. We find dN/d(ln q) ~ q^p, with p = 1.05 (+0.78,-0.68), which confirms the turnover in the mass function found by Suzuki et al. relative to the power law of opposite sign n = -0.93 +/- 0.13 at higher mass ratios q >~ 2 * 10^-4. We combine our result with that of Suzuki et al. to obtain p = 0.73 (+0.42,-0.34).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا