Do you want to publish a course? Click here

Current-induced magnetization switching using electrically-insulating spin-torque generator

181   0   0.0 ( 0 )
 Added by Kazuya Ando
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Current-induced magnetization switching through spin-orbit torques (SOTs) is the fundamental building block of spin-orbitronics. The SOTs generally arise from the spin-orbit coupling of heavy metals. However, even in a heterostructure where a metallic magnet is sandwiched by two different insulators, a nonzero current-induced SOT is expected because of the broken inversion symmetry; an electrical insulator can be a spin-torque generator. Here, we demonstrate current-induced magnetization switching using an insulator. We show that oxygen incorporation into the most widely used spintronic material, Pt, turns the heavy metal into an electrically-insulating generator of the SOTs, enabling the electrical switching of perpendicular magnetization in a ferrimagnet sandwiched by electrically-insulating oxides. We further found that the SOTs generated from the Pt oxide can be controlled electrically through voltage-driven oxygen migration. These findings open a route towards energy-efficient, voltage-programmable spin-orbit devices based on solid-state switching of heavy metal oxidation.



rate research

Read More

Spin-orbit torque can drive electrical switching of magnetic layers. Here, we report that at least for micrometer-sized samples there is no simple correlation between the efficiency of dampinglike spin-orbit torque ({xi}_DL^j) and the critical switching current density of perpendicularly magnetized spin-current generator/ferromagnet heterostructures. We find that the values of {xi}_DL^j based on switching current densities can either under- or over-estimated {xi}_DL^j by up to tens of times in a domain-wall depinning analysis, while in the macrospin analysis based on the switching current density {xi}_DL^j can be overestimated by up to thousands of times. When comparing the relative strengths of {xi}_DL^j of spin-current generators, the critical switching current densities by themselves are a poor predictor.
The ability to switch magnetic elements by spin-orbit-induced torques has recently attracted much attention for a path towards high-performance, non-volatile memories with low power consumption. Realizing efficient spin-orbit-based switching requires harnessing both new materials and novel physics to obtain high charge-to-spin conversion efficiencies, thus making the choice of spin source crucial. Here we report the observation of spin-orbit torque switching in bilayers consisting of a semimetallic film of 1T-MoTe2 adjacent to permalloy. Deterministic switching is achieved without external magnetic fields at room temperature, and the switching occurs with currents one order of magnitude smaller than those typical in devices using the best-performing heavy metals. The thickness dependence can be understood if the interfacial spin-orbit contribution is considered in addition to the bulk spin Hall effect. Further threefold reduction in the switching current is demonstrated with resort to dumbbell-shaped magnetic elements. These findings foretell exciting prospects of using MoTe2 for low-power semimetal material based spin devices.
Precise estimation of spin Hall angle as well as successful maximization of spin-orbit torque (SOT) form a basis of electronic control of magnetic properties with spintronic functionality. Until now, current-nonlinear Hall effect, or second harmonic Hall voltage has been utilized as one of the methods for estimating spin Hall angle, which is attributed to the magnetization oscillation by SOT. Here, we argue the second harmonic Hall voltage in magnetic/nonmagnetic topological insulator (TI) heterostructures, Cr$_x$(Bi$_{1-y}$Sb$_y$)$_{2-x}$Te$_3$/(Bi$_{1-y}$Sb$_y$)$_2$Te$_3$. From the angular, temperature and magnetic field dependence, it is unambiguously shown that the large second harmonic Hall voltage in TI heterostructures is governed not by SOT but mainly by asymmetric magnon scattering mechanism without magnetization oscillation. Thus, this method does not allow an accurate estimation of spin Hall angle when magnons largely contribute to electron scattering. Instead, the SOT contribution in a TI heterostructure is exemplified by current pulse induced non-volatile magnetization switching, which is realized with a current density of $sim 2.5 times 10^{10} mathrm{A/m}^2$, showing its potential as spintronic materials.
This study reports the magnetization switching induced by spin-orbit torque (SOT) from the spin current generated in Co2MnGa magnetic Weyl semimetal (WSM) thin films. We deposited epitaxial Co2MnGa thin films with highly B2-ordered structure on MgO(001) substrates. The SOT was characterized by harmonic Hall measurements in a Co2MnGa/Ti/CoFeB heterostructure and a relatively large spin Hall efficiency of -7.8% was obtained.The SOT-induced magnetization switching of the perpendicularly magnetized CoFeB layer was further demonstrated using the structure. The symmetry of second harmonic signals, thickness dependence of spin Hall efficiency, and shift of anomalous Hall loops under applied currents were also investigated. This study not only contributes to the understanding of the mechanisms of spin-current generation from magnetic-WSM-based heterostructures, but also paves a way for the applications of magnetic WSMs in spintronic devices.
149 - N. Theodoropoulou 2007
We test whether current-induced magnetization switching due to spin-transfer-torque in ferromagnetic/non-magnetic/ferromagnetic (F/N/F) trilayers changes significantly when scattering within the N-metal layers is changed from ballistic to diffusive. Here ballistic corresponds to a ratio r = lambda/t greater than or equal to 3 for a Cu spacer layer, and diffusive to r = lambda/t less than or equal to 0.4 for a CuGe alloy spacer layer, where lambda is the mean-free-path in the N-layer of fixed thickness t = 10 nm. The average switching currents for the alloy spacer layer are only modestly larger than those for Cu. The best available model predicts a much greater sensitivity of the switching currents to diffuse scattering in the spacer layer than we see.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا