Do you want to publish a course? Click here

Chemical enrichment and accretion of nitrogen-loud quasars

63   0   0.0 ( 0 )
 Added by Kenta Matsuoka
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present rest-frame optical spectra of 12 nitrogen-loud quasars at z ~ 2.2, whose rest-frame ultraviolet (UV) spectra show strong nitrogen broad emission lines. To investigate their narrow-line region (NLR) metallicities, we measure the equivalent width (EW) of the [OIII]5007 emission line: if the NLR metallicity is remarkably high as suggested by strong UV nitrogen lines, the [OIII]5007 line flux should be very week due to the low equilibrium temperature of the ionized gas owing to significant metal cooling. In the result, we found that our spectra show moderate EW of the [OIII]5007 line similar to general quasars. This indicates nitrogen-loud quasars do not have extremely metal-rich gas clouds in NLRs. This suggests that strong nitrogen lines from broad-line regions (BLRs) are originated by exceptionally high abundances of nitrogen relative to oxygen without very high BLR metallicities. This result indicates that broad-emission lines of nitrogen are not good indicators of the BLR metallicity in some cases. On the other hand, we also investigate virial black-hole masses and Eddington ratios by using the Hbeta and CIV1549 lines for our sample. As a result, we found that black-hole masses and Eddington ratios of nitrogen-loud quasars tend to be low and high relative to normal quasars, suggesting that nitrogen-loud quasars seem to be in a rapidly-accreting phase. This can be explained in terms of a positive correlation between Eddington ratios and nitrogen abundances of quasars, that is probably caused by the connection between the mass accretion onto black holes and nuclear star formation.



rate research

Read More

We present the results from VLT/X-shooter spectroscopic observations of 11 extremely strong intervening damped Lyman-alpha absorbers (ESDLAs) initially selected as high N(Hi) (i.e.>=5x10^21 cm-2) candidates from the Sloan Digital Sky Survey (SDSS). We confirm the high Hi column densities which we measure to be in the range log N(Hi) = 21.6-22.4. Molecular hydrogen is detected with high column densities (N(H_2)>=10^18 cm-2) in five out of eleven systems, three of which are reported here for the first time. We compare the chemical properties of this sample of ESDLAs, supplemented with literature measurements, to that of DLAs located at the redshift of long-duration gamma-ray bursts (GRB-DLAs). We confirm that the two populations are almost indistinguishable in terms of chemical enrichment, H_2 column density and gas kinematics. All this suggests that ESDLAs and GRB-DLAs probe similar galactic environments. We search for the galaxy counterparts of ESDLAs and find associated emission lines in three out of eleven systems, two of which are reported here for the first time (towards the quasars SDSS J002503.03+114547.80 and SDSS J114347.21+142021.60, respectively). The measured separations between the quasar sightlines and the emission associated with the ESDLA galaxy are all very small (rho < 3 kpc). While the small impact parameters are similar to what is observed for GRB-DLAs, the associated star-formation rates are on average lower than seen for GRB host galaxies. This is explained by long-duration GRBs being associated with the death of massive stars, hence pinpointing regions of active star formation in the GRB host galaxies. Our observations support the suggestion from the literature that ESDLAs could act as blind analogues of GRB-DLAs, probing high column density neutral gas in the heart of high-redshift galaxies, without any prior on the instantaneous star-formation rate.
We discuss 6 GHz JVLA observations covering a volume-limited sample of 178 low redshift ($0.2 < z < 0.3$) optically selected QSOs. Our 176 radio detections fall into two clear categories: (1) About $20$% are radio-loud QSOs (RLQs) having spectral luminosities $L_6 gtrsim 10^{,23.2} mathrm{~W~Hz}^{-1}$ primarily generated in the active galactic nucleus (AGN) responsible for the excess optical luminosity that defines a emph{bona fide} QSO. (2) The radio-quiet QSOs (RQQs) have $10^{,21} lesssim L_6 lesssim 10^{,23.2} mathrm{~W~Hz}^{-1}$ and radio sizes $lesssim 10 mathrm{~kpc}$, and we suggest that the bulk of their radio emission is powered by star formation in their host galaxies. Radio silent QSOs ($L_6 lesssim 10^{,21} mathrm{~W~Hz}^{-1}$) are rare, so most RQQ host galaxies form stars faster than the Milky Way; they are not red and dead ellipticals. Earlier radio observations did not have the luminosity sensitivity $L_6 lesssim 10^{,21} mathrm{~W~Hz}^{-1}$ needed to distinguish between such RLQs and RQQs. Strong, generally double-sided, radio emission spanning $gg 10 mathrm{~kpc}$ was found associated with 13 of the 18 RLQ cores having peak flux densities $S_mathrm{p} > 5 mathrm{~mJy~beam}^{-1}$ ($log(L) gtrsim 24$). The radio luminosity function of optically selected QSOs and the extended radio emission associated with RLQs are both inconsistent with simple unified models that invoke relativistic beaming from randomly oriented QSOs to explain the difference between RLQs and RQQs. Some intrinsic property of the AGNs or their host galaxies must also determine whether or not a QSO appears radio loud.
Chemical abundances are presented for 19 elements in a sample of 63 red giants in the Carina dwarf spheroidal galaxy (dSph), based on homogeneous 1D/LTE model atmosphere analyses of our own observations (32 stars) and data available in the literature (a further 31 independent stars). The (Fe) metallicity and [$alpha$/Fe] distribution functions have mean values and dispersions of -1.59 and 0.33 dex ([Fe/H] range: -2.68 to -0.64), and 0.07 and 0.13 dex ([$alpha$/Fe] range: -0.27 to 0.25), respectively. We confirm the finding of Venn et al. (2012) that a small percentage (some 10% in the present investigation) of the sample show clear evidence for significant enrichment by Type Ia supernovae ejecta. Calcium, with the most accurately determined abundance of the alpha-elements, shows an asymmetric distribution towards smaller values of [Ca/Fe] at all [Fe/H], most significantly over -2.0 < [Fe/H] < -1.0, suggestive of incomplete mixing of the ejecta of Type Ia SNe with the ambient medium of each of Carinas generations. Approximate color-magnitude-diagram age estimates are presented for the sample and, together with our chemical abundances, compared with the results of our previous synthetic CMD analysis, which reported the details of Carinas four well-defined populations. We searched for the Na-O anti-correlation universally reported in the Galaxys globular clusters, and confirm that this phenomenon does not exist in Carina. We also found that one of the 32 stars in our sample has an extremely enhanced lithium abundance -- A(Li)$_{text{NLTE}}$ = +3.36, consistent with membership of the ~1% group of Li-rich stars in dSph described by Kirby et al.
This paper reports on the extreme ultraviolet (EUV) spectrum of three low redshift ($z sim 0.6$) radio loud quasars, 3C 95, 3C 57 and PKS 0405-123. The spectra were obtained with the Cosmic Origins Spectrograph (COS) of the Hubble Space Telescope. The bolometric thermal emission, $L_{bol}$, associated with the accretion flow is a large fraction of the Eddington limit for all of these sources. We estimate the long term time averaged jet power, $overline{Q}$, for the three sources. $overline{Q}/L_{bol}$, is shown to lie along the correlation of $overline{Q}/L_{bol}$ and $alpha_{EUV}$ found in previous studies of the EUV continuum of intermediate and high redshift quasars, where the EUV continuum flux density between 1100 AA, and 700 AA, is defined by $F_{ u} sim u^{-alpha_{EUV}}$. The high Eddington ratios of the three quasars extends the analysis into a wider parameter space. Selecting quasars with high Eddington ratios has accentuated the statistical significance of the partial correlation analysis of the data. Namely. the correlation of $overline{Q}/L_{mathrm{bol}}$ and $alpha_{EUV}$ is fundamental and the correlation of $overline{Q}$ and $alpha_{EUV}$ is spurious at a very high statistical significance level (99.8%). This supports the regulating role of ram pressure of the accretion flow in magnetically arrested accretion models of jet production. In the process of this study, we use multi-frequency and multi-resolution Very Large Array radio observations to determine that one of the bipolar jets in 3C 57 is likely frustrated by galactic gas that keeps the jet from propagating outside the host galaxy.
Broad absorption lines (BALs) are present in the spectra of ~20% of quasars (QSOs); this indicates fast outflows (up to 0.2c) that intercept the observers line of sight. These QSOs can be distinguished again into radio-loud (RL) BAL QSOs and radio-quiet (RQ) BAL QSOs. The first are very rare, even four times less common than RQ BAL QSOs. The reason for this is still unclear and leaves open questions about the nature of the BAL-producing outflows and their connection with the radio jet. We explored the spectroscopic characteristics of RL and RQ BAL QSOs with the aim to find a possible explanation for the rarity of RL BAL QSOs. We identified two samples of genuine BAL QSOs from SDSS optical spectra, one RL and one RQ, in a suitable redshift interval (2.5$<z<$3.5) that allowed us to observe the Mg II and H$beta$ emission lines in the adjacent near-infrared (NIR) band. We collected NIR spectra of the two samples using the Telescopio Nazionale Galileo (TNG, Canary Islands). By using relations known in the literature, we estimated the black-hole mass, the broad-line region radius, and the Eddington ratio of our objects and compared the two samples. We found no statistically significant differences from comparing the distributions of the cited physical quantities. This indicates that they have similar geometries, accretion rates, and central black-hole masses, regardless of whether the radio-emitting jet is present or not. These results show that the central engine of BAL QSOs has the same physical properties with and without a radio jet. The reasons for the rarity of RL BAL QSOs must reside in different environmental or evolutionary variables.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا