Granular Response to Impact: Topology of the Force Networks


Abstract in English

Impact of an intruder on granular matter leads to formation of mesoscopic force networks seen particularly clearly in the recent experiments carried out with photoelastic particles, e.g., Clark et al., Phys. Rev. Lett., 114 144502 (2015). These force networks are characterized by complex structure and evolve on fast time scales. While it is known that total photoelastic activity in the granular system is correlated with the acceleration of the intruder, it is not known how the structure of the force network evolves during impact, and if there is a dominant features in the networks that can be used to describe intruders dynamics. Here, we use topological tools, in particular persistent homology, to describe these features. Persistent homology allows quantification of both structure and time evolution of the resulting force networks. We find that there is a clear correlation of the intruders dynamics and some of the topological measures implemented. This finding allows us to discuss which properties of the force networks are most important when attempting to describe intruders dynamics. Regarding temporal evolution of the networks, we are able to define the upper bound on the relevant time scale on which the networks evolve.

Download