No Arabic abstract
We propose a measure of quantum steerability, namely a convex steering monotone, based on the trace distance between a given assemblage and its corresponding closest assemblage admitting a local-hidden-state (LHS) model. We provide methods to estimate such a quantity, via lower and upper bounds, based on semidefinite programming. One of these upper bounds has a clear geometrical interpretation as a linear function of rescaled Euclidean distances in the Bloch sphere between the normalized quantum states of: (i) a given assemblage and (ii) an LHS assemblage. For a qubit-qubit quantum state, the above ideas also allow us to visualize various steerability properties of the state in the Bloch sphere via the so-called LHS surface. In particular, some steerability properties can be obtained by comparing such an LHS surface with a corresponding quantum steering ellipsoid. Thus, we propose a witness of steerability corresponding to the difference of the volumes enclosed by these two surfaces. This witness (which reveals the steerability of a quantum state) enables finding an optimal measurement basis, which can then be used to determine the proposed steering monotone (which describes the steerability of an assemblage) optimized over all mutually-unbiased bases.
Einstein-Podolsky-Rosen (EPR) steering is a form of bipartite quantum correlation that is intermediate between entanglement and Bell nonlocality. It allows for entanglement certification when the measurements performed by one of the parties are not characterised (or are untrusted) and has applications in quantum key distribution. Despite its foundational and applied importance, EPR steering lacks a quantitative assessment. Here we propose a way of quantifying this phenomenon and use it to study the steerability of several quantum states. In particular we show that every pure entangled state is maximally steerable, the projector onto the anti-symmetric subspace is maximally steerable for all dimensions, we provide a new example of one-way steering, and give strong support that states with positive-partial-transposition are not steerable.
Protocols for testing or exploiting quantum correlations-such as entanglement, Bell nonlocality, and Einstein-Podolsky-Rosen steering- generally assume a common reference frame between two parties. Establishing such a frame is resource-intensive, and can be technically demanding for distant parties. While Bell nonlocality can be demonstrated with high probability for a large class of two-qubit entangled states when the parties have one or no shared reference direction, the degree of observed nonlocality is measurement-orientation dependent and can be arbitrarily small. In contrast, we theoretically prove that steering can be demonstrated with 100% probability, for a larger class of states, in a rotationally-invariant manner, and experimentally demonstrate rotationally-invariant steering in a variety of cases. We also show, by comparing with the steering inequality of Cavalcanti et al. [J. Opt. Soc. Am. B 32, A74 (2015)], that the steering inequality we derive is the optimal rotationally invariant one for the case of two settings per side and two-qubit states having maximally mixed reduced (local) states.
The Einstein-Podolsky-Rosen (EPR) paradox is one of the milestones in quantum foundations, arising from the lack of local realistic description of quantum mechanics. The EPR paradox has stimulated an important concept of quantum nonlocality, which manifests itself by three different types: quantum entanglement, quantum steering, and Bell nonlocality. Although Bell nonlocality is more often used to show the quantum nonlocality, the original EPR paradox is essentially a steering paradox. In this work, we formulate the original EPR steering paradox into a contradiction equality,thus making it amenable to an experimental verification. We perform an experimental test of the steering paradox in a two-qubit scenario. Furthermore, by starting from the steering paradox, we generate a generalized linear steering inequality and transform this inequality into a mathematically equivalent form, which is more friendly for experimental implementation, i.e., one may only measure the observables in $x$-, $y$-, or $z$-axis of the Bloch sphere, rather than other arbitrary directions. We also perform experiments to demonstrate this scheme. Within the experimental errors, the experimental results coincide with the theoretical predictions. Our results deepen the understanding of quantum foundations and provide an efficient way to detect the steerability of quantum states.
If entanglement could be verified without any trust in the devices of observers, i.e., in a device-independent (DI) way, then unconditional security can be guaranteed for various quantum information tasks. In this work, we propose an experimental-friendly DI protocol to certify the presence of entanglement, based on Einstein-Podolsky-Rosen (EPR) steering. We first establish the DI verification framework, relying on the measurement-device-independent technique and self-testing, and show it is able to verify all EPR-steerable states. In the context of three-measurement settings as per party, it is found to be noise robustness towards inefficient measurements and imperfect self-testing. Finally, a four-photon experiment is implemented to device-independently verify EPR-steering even for Bell local states. Our work paves the way for realistic implementations of secure quantum information tasks.
The Einstein-Podolsky-Rosen (EPR) steering, which is regarded as a category of quantum nonlocal correlations, owns the asymmetric property in contrast with the entanglement and the Bell nonlocality. For the multipartite EPR steering, monogamy, which limits the two observers to steer the third one simultaneously, emerges as an essential property. However, more configurations of shareability relations in the reduced subsystem which are beyond the monogamy could be observed by increasing the numbers of measurement setting, in which the experimental verification is still absent. Here, in an optical experiment, we provide a proof-of-principle demonstration of shareability of the EPR steering without constraint of monogamy in the three-qubit system, in which Alice could be steered by Bob and Charlie simultaneously. Moreover, based on the reduced bipartite EPR steering detection, we verify the genuine three-qubit entanglement. This work provides a basis for an improved understanding of the multipartite EPR steering and has potential applications in many quantum information protocols, such as multipartite entanglement detection and quantum cryptography.