Do you want to publish a course? Click here

Space Technology for Directly Imaging and Characterizing Exo-Earths

49   0   0.0 ( 0 )
 Added by Brendan Crill
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The detection of Earth-like exoplanets in the habitable zone of their stars, and their spectroscopic characterization in a search for biosignatures, requires starlight suppression that exceeds the current best ground-based performance by orders of magnitude. The required planet/star brightness ratio of order 1e-10 at visible wavelengths can be obtained by blocking stellar photons with an occulter, either externally (a starshade) or internally (a coronagraph) to the telescope system, and managing diffracted starlight, so as to directly image the exoplanet in reected starlight. Coronagraph instruments require advancement in telescope aperture (either monolithic or segmented), aperture obscurations (obscured by secondary mirror and its support struts), and wavefront error sensitivity (e.g. line-of-sight jitter, telescope vibration, polarization). The starshade, which has never been used in a science application, benefits a mission by being decoupled from the telescope, allowing a loosening of telescope stability requirements. In doing so, it transfers the difficult technology from the telescope system to a large deployable structure (tens of meters to greater than 100 m in diameter) that must be positioned precisely at a distance of tens of thousands of kilometers from the telescope. We describe in this paper a roadmap to achieving the technological capability to search for biosignatures on an Earth-like exoplanet from a future space telescope. Two of these studies, HabEx and LUVOIR, include the direct imaging of Earth-sized habitable exoplanets as a central science theme.



rate research

Read More

Direct imaging of exo-Earths and search for life is one of the most exciting and challenging objectives for future space observatories. Segmented apertures in space will be required to reach the needed large diameters beyond the capabilities of current or planned launch vehicles. These apertures present additional challenges for high-contrast coronagraphy, not only in terms of static phasing but also in terms of their stability. The Pair-based Analytical model for Segmented Telescope Imaging from Space (PASTIS) was developed to model the effects of segment-level optical aberrations on the final image contrast. In this paper, we extend the original PASTIS propagation model from a purely analytical to a semi-analytical method, in which we substitute the use of analytical images with numerically simulated images. The inversion of this model yields a set of orthonormal modes that can be used to determine segment-level wavefront tolerances. We present results in the case of segment-level piston error applied to the baseline coronagraph design of LUVOIR A, with minimum and maximum wavefront error constraint between 56 pm and 290 pm per segment. The analysis is readily generalizable to other segment-level aberrations modes, and can also be expanded to establish stability tolerances for these missions.
182 - M. Postman , W. Traub , J. Krist 2009
The Advanced Technology Large Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation UV-Optical-Near Infrared space telescope with an aperture size of 8 to 16 meters. ATLAST, using an internal coronagraph or an external occulter, can characterize the atmosphere and surface of an Earth-sized exoplanet in the Habitable Zone of long-lived stars at distances up to ~45 pc, including its rotation rate, climate, and habitability. ATLAST will also allow us to glean information on the nature of the dominant surface features, changes in cloud cover and climate, and, potentially, seasonal variations in surface vegetation. ATLAST will be able to visit up to 200 stars in 5 years, at least three times each, depending on the technique used for starlight suppression and the telescope aperture. More frequent visits can be made for interesting systems.
The Optimal Optical CoronagraphWorkshop at the Lorentz Center in September 2017 in Leiden, the Netherlands gathered a diverse group of 25 researchers working on exoplanet instrumentation to stimulate the emergence and sharing of new ideas. This contribution is the final part of a series of three papers summarizing the outcomes of the workshop, and presents an overview of novel optical technologies and systems that are implemented or considered for high-contrast imaging instruments on both ground-based and space telescopes. The overall objective of high contrast instruments is to provide direct observations and characterizations of exoplanets at contrast levels as extreme as 10^-10. We list shortcomings of current technologies, and identify opportunities and development paths for new technologies that enable quantum leaps in performance. Specifically, we discuss the design and manufacturing of key components like advanced deformable mirrors and coronagraphic optics, and their amalgamation in adaptive coronagraph systems. Moreover, we discuss highly integrated system designs that combine contrast-enhancing techniques and characterization techniques (like high-resolution spectroscopy) while minimizing the overall complexity. Finally, we explore extreme implementations using all-photonics solutions for ground-based telescopes and dedicated huge apertures for space telescopes.
The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation of UVOIR space observatory with a primary aperture diameter in the 8-m to 16-m range that will allow us to perform some of the most challenging observations to answer some of our most compelling questions, including Is there life elsewhere in the Galaxy? We have identified two different telescope architectures, but with similar optical designs, that span the range in viable technologies. The architectures are a telescope with a monolithic primary mirror and two variations of a telescope with a large segmented primary mirror. This approach provides us with several pathways to realizing the mission, which will be narrowed to one as our technology development progresses. The concepts invoke heritage from HST and JWST design, but also take significant departures from these designs to minimize complexity, mass, or both. Our report provides details on the mission concepts, shows the extraordinary scientific progress they would enable, and describes the most important technology development items. These are the mirrors, the detectors, and the high-contrast imaging technologies, whether internal to the observatory, or using an external occulter. Experience with JWST has shown that determined competitors, motivated by the development contracts and flight opportunities of the new observatory, are capable of achieving huge advances in technical and operational performance while keeping construction costs on the same scale as prior great observatories.
The Space VLBI 2020: Science and Technology Futures meeting was the second in The Future of High-Resolution Radio Interferometry in Space series. The first meeting (2018 September 5--6; Noordwijk, the Netherlands) focused on the full range of science applications possible for very long baseline interferometry (VLBI) with space-based antennas. Accordingly, the observing frequencies (wavelengths) considered ranged from below 1~MHz (> 300 m) to above 300~GHz (< 1 mm). For this second meeting, the focus was narrowed to mission concepts and the supporting technologies to enable the highest angular resolution observations at frequencies of 30~GHz and higher (< 1 cm). This narrowing of focus was driven by both scientific and technical considerations. First, results from the RadioAstron mission and the Event Horizon Telescope (EHT) have generated considerable excitement for studying the inner portions of black hole (BH) accretion disks and jets and testing elements of the General Theory of Relativity (GR). Second, the technologies and requirements involved in space-based VLBI differ considerably between 100~MHz and 100~GHz; a related consideration is that there are a number of existing instruments or mission concepts for frequencies of approximately 100~MHz and below, while it has been some time since attention has been devoted to space VLBI at frequencies above 10~GHz. This conference summary attempts to capture elements of presentations and discussions that occurred.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا