Do you want to publish a course? Click here

Spectral Variability of Two Rapidly Rotating Brown Dwarfs: 2MASS J08354256-0819237 and 2MASS J18212815+1414010

266   0   0.0 ( 0 )
 Added by Everett Schlawin
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

L dwarfs exhibit low-level, rotationally-modulated photometric variability generally associated with heterogeneous, cloud-covered atmospheres. The spectral character of these variations yields insight into the particle sizes and vertical structure of the clouds. Here we present the results of a high precision, ground-based, near-infrared, spectral monitoring study of two mid-type L dwarfs that have variability reported in the literature, 2MASS J08354256-0819237 and 2MASS J18212815+1414010, using the SpeX instrument on the Infrared Telescope Facility. By simultaneously observing a nearby reference star, we achieve <0.15% per-band sensitivity in relative brightness changes across the 0.9--2.4um bandwidth. We find that 2MASS J0835-0819 exhibits marginal (< ~0.5% per band) variability with no clear spectral dependence, while 2MASS J1821+1414 varies by up to +/-1.5% at 0.9 um, with the variability amplitude declining toward longer wavelengths. The latter result extends the variability trend observed in prior HST/WFC3 spectral monitoring of 2MASS J1821+1414, and we show that the full 0.9-2.4 um variability amplitude spectrum can be reproduced by Mie extinction from dust particles with a log-normal particle size distribution with a median radius of 0.24 um. We do not detect statistically significant phase variations with wavelength. The different variability behavior of 2MASS J0835-0819 and 2MASS J1821+1414 suggests dependencies on viewing angle and/or overall cloud content, underlying factors that can be examined through a broader survey.



rate research

Read More

Context: Observations of auroral emissions are powerful means to remotely sense the space plasma environment around planetary bodies and ultracool dwarfs. Therefore successful searches and characterization of aurorae outside the Solar System will open new avenues in the area of extrasolar space physics. Aims: We aim to demonstrate that brown dwarfs are ideal objects to search for UV aurora outside the Solar System. We specifically search for UV aurora on the late-type T6.5 brown dwarf 2MASS J12373919+6526148 (in the following 2MASS J1237+6526). Methods: Introducing a parameter referred to as auroral power potential, we derive scaling models for auroral powers for rotationally driven aurora applicable to a broad range of wavelengths. We also analyze Hubble Space Telescope observations obtained with the STIS camera at near-UV, far-UV, and Ly-$alpha$ wavelengths of 2MASS J1237+6526. Results: We show that brown dwarfs, due to their typically strong surface magnetic fields and fast rotation, can produce auroral UV powers on the order of 10$^{19}$ watt or more. Considering their negligible thermal UV emission, their potentially powerful auroral emissions make brown dwarfs ideal candidates for detecting extrasolar aurorae. We find possible emission from 2MASS J1237+6526, but cannot conclusively attribute it to the brown dwarf due to low signal-to-noise values in combination with nonsystematic trends in the background fluxes. The observations provide upper limits for the emission at various UV wavelength bands. The upper limits for the emission correspond to a UV luminosity of $sim$1 $times$ 10$^{19}$ watt, which lies in the range of the theoretically expected values. Conclusions: The possible auroral emission from the dwarf could be produced by a close-in companion and/or magnetospheric transport processes.
59 - Adam J. Burgasser , 2017
[not part of Research Note] We report the discovery of a widely-separated low-mass binary as a candidate member of the $sim$40 Myr Argus Association. Resolved imaging and astrometry with 2MASS and LDSS-3 reveal a common proper motion pair of red sources separated by 4.23$pm$0.11, with the secondary roughly one magnitude fainter at $i$, $z$ and $J$. Resolved spectroscopy indicates component types of M8pec and M9pec, the peculiarities arising from weak Na I and strong VO absorption characteristic of low gravity sources. With its small proper motion and estimated 75$pm$25 pc distance, the BANYAN II tool indicates a membership probability of 93% in Argus, which would be consistent with a pair of brown dwarfs of mass $sim$0.04 M$_{odot}$ separated by $sim$300 AU.
New sets of young M dwarfs with complex, sharp-peaked, and strictly periodic photometric modulations have recently been discovered with Kepler/K2 and TESS data. All of these targets are part of young star-forming associations. Suggested explanations range from accretion of dust disks to co-rotating clouds of material to stellar spots getting periodically occulted by spin-orbit-misaligned dust disks. Here we provide a comprehensive overview of all aspects of these hypotheses, and add more observational constraints in an effort to understand these objects with photometry from TESS and the SPECULOOS Southern Observatory (SSO). We scrutinize the hypotheses from three different angles: (1) we investigate the occurrence rates of these scenarios through existing young star catalogs; (2) we study the longevity of these features using over one year of combined photometry from TESS and SSO; and (3) we probe the expected color dependency with multi-color photometry from SSO. In this process, we also revisit the stellar parameters accounting for activity effects, study stellar flares as activity indicators over year-long time scales, and develop toy models to imitate typical morphologies. We identify which parts of the hypotheses hold true or are challenged by these new observations. So far, none of the hypotheses stand out as a definite answer, and each come with limitations. While the mystery of these complex rotators remains, we here add valuable observational pieces to the puzzle for all studies going forward.
Models of brown dwarf atmospheres suggest they exhibit complex physical behaviour. Observations have shown that they are indeed dynamic, displaying small photometric variations over timescales of hours. Here I report results of infrared (0.95-1.64 micron) spectrophotometric monitoring of four field L and T dwarfs spanning timescales of 0.1-5.5 hrs, the goal being to learn more about the physical nature of this variability. Spectra are analysed differentially with respect to a simultaneously observed reference source in order to remove Earth-atmospheric variations. The variability amplitude detected is typically 2-10%, depending on the source and wavelength. I analyse the data for correlated variations between spectral indices. This approach is more robust than single band or chisq analyses, because it does not assume an amplitude for the (often uncertain) noise level (although the significance test still assumes a shape for the noise power spectrum). Three of the four targets show significant evidence for correlated variability. Some of this can be associated with specific features including Fe, FeH, VO and KI, and there is good evidence for intrinsic variability in water and possibly also methan. Yet some of this variability covers a broader spectral range which would be consistent with dust opacity variations. The underlying common cause is plausibly localized temperature or composition fluctuations caused by convection. Looking at the high signal-to-noise ratio stacked spectra we see many previously identified spectral features of L and T dwarfs, such as KI, NaI, FeH, water and methane. In particular we may have detected methane absorption at 1.3-1.4 micron in the L5 dwarf SDSS 0539-0059.
We report the discovery of two intermediate-mass brown dwarfs (BDs), TOI-569b and TOI-1406b, from NASAs Transiting Exoplanet Survey Satellite mission. TOI-569b has an orbital period of $P = 6.55604 pm 0.00016$ days, a mass of $M_b = 64.1 pm 1.9 M_J$, and a radius of $R_b = 0.75 pm 0.02 R_J$. Its host star, TOI-569, has a mass of $M_star = 1.21 pm 0.03 M_odot$, a radius of $R_star = 1.47 pm 0.03 R_odot$, $rm [Fe/H] = +0.29 pm 0.09$ dex, and an effective temperature of $T_{rm eff} = 5768 pm 110K$. TOI-1406b has an orbital period of $P = 10.57415 pm 0.00063$ days, a mass of $M_b =46.0 pm 2.7 M_J$, and a radius of $R_b = 0.86 pm 0.03 R_J$. The host star for this BD has a mass of $M_star =1 .18 pm 0.09 M_odot$, a radius of $R_star = 1.35 pm 0.03 R_odot$, $ rm [Fe/H] = -0.08 pm 0.09$ dex and an effective temperature of $T_{rm eff} = 6290 pm 100K$. Both BDs are in circular orbits around their host stars and are older than 3 Gyr based on stellar isochrone models of the stars. TOI-569 is one of two slightly evolved stars known to host a transiting BD (the other being KOI-415). TOI-1406b is one of three known transiting BDs to occupy the mass range of $40-50 M_J$ and one of two to have a circular orbit at a period near 10 days (with the first being KOI-205b).Both BDs have reliable ages from stellar isochrones in addition to their well-constrained masses and radii, making them particularly valuable as tests for substellar isochrones in the BD mass-radius diagram.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا