Do you want to publish a course? Click here

Tuning the motility and directionality of self-propelled colloids

276   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Microorganisms are able to overcome the thermal randomness of their surroundings by harvesting energy to navigate in viscous fluid environments. In a similar manner, synthetic colloidal microswimmers are capable of mimicking complex biolocomotion by means of simple self-propulsion mechanisms. Although experimentally the speed of active particles can be controlled by e.g. self-generated chemical and thermal gradients, an in-situ change of swimming direction remains a challenge. In this work, we study self-propulsion of half-coated spherical colloids in critical binary mixtures and show that the coupling of local body forces, induced by laser illumination, and the wetting properties of the colloid, can be used to finely tune both the colloids swimming speed and its directionality. We experimentally and numerically demonstrate that the direction of motion can be reversibly switched by means of the size and shape of the droplet(s) nucleated around the colloid, depending on the particle radius and the fluids ambient temperature. Moreover, the aforementioned features enable the possibility to realize both negative and positive phototaxis in light intensity gradients. Our results can be extended to other types of half-coated microswimmers, provided that both of their hemispheres are selectively made active but with distinct physical properties.



rate research

Read More

We study the behaviour of interacting self-propelled particles, whose self-propulsion speed decreases with their local density. By combining direct simulations of the microscopic model with an analysis of the hydrodynamic equations obtained by explicitly coarse graining the model, we show that interactions lead generically to the formation of a host of patterns, including moving clumps, active lanes and asters. This general mechanism could explain many of the patterns seen in recent experiments and simulations.
A gold-capped Janus particle suspended in a near-critical binary liquid mixture can self-propel under illumination. We have immobilized such a particle in a narrow channel and studied the nonequilibrium dynamics of a binary solvent around it, using experiment and numerical simulations. For the latter we consider both a purely diffusive and a hydrodynamic model. All approaches indicate that the early time dynamics is purely diffusive and characterized by composition layers traveling with a constant speed from the surface of the colloid into the bulk. Subsequently, hydrodynamic effects set in and the transient state is destroyed by strong nonequilibrium concentration fluctuations, which arise as a result of the temperature gradient and the vicinity of the critical point of the binary liquid mixture. They give rise to a complex, permanently changing coarsening patterns. For a mobile particle, the transient dynamics results in propulsion in the direction opposite to that observed after the steady state is attained.
177 - Yaouen Fily , Silke Henkes , 2013
We study numerically a model of non-aligning self-propelled particles interacting through steric repulsion, which was recently shown to exhibit active phase separation in two dimensions in the absence of any attractive interaction or breaking of the orientational symmetry. We construct a phase diagram in terms of activity and packing fraction and identify three distinct regimes: a homogeneous liquid with anomalous cluster size distribution, a phase-separated state both at high and at low density, and a frozen phase. We provide a physical interpretation of the various regimes and develop scaling arguments for the boundaries separating them.
We study the glassy dynamics taking place in dense assemblies of athermal active particles that are driven solely by a nonequilibrium self-propulsion mechanism. Active forces are modeled as an Ornstein-Uhlenbeck stochastic process, characterized by a persistence time and an effective temperature, and particles interact via a Lennard-Jones potential that yields well-studied glassy behavior in the Brownian limit, obtained as the persistence time vanishes. By increasing the persistence time, the system departs more strongly from thermal equilibrium and we provide a comprehensive numerical analysis of the structure and dynamics of the resulting active fluid. Finite persistence times profoundly affect the static structure of the fluid and give rise to nonequilibrium velocity correlations that are absent in thermal systems. Despite these nonequilibrium features, for any value of the persistence time we observe a nonequilibrium glass transition as the effective temperature is decreased. Surprisingly, increasing departure from thermal equilibrium is found to promote (rather than suppress) the glassy dynamics. Overall, our results suggest that with increasing persistence time, microscopic properties of the active fluid change quantitatively, but the broad features of the nonequilibrium glassy dynamics observed with decreasing the effective temperature remain qualitatively similar to those of thermal glass-formers.
A number of novel experimental and theoretical results have recently been obtained on active soft matter, demonstrating the various interesting universal and anomalous features of this kind of driven systems. Here we consider a fundamental but still unexplored aspect of the patterns arising in the system of actively moving units, i.e., their segregation taking place when two kinds of them with different adhesive properties are present. The process of segregation is studied by a model made of self-propelled particles such that the particles have a tendency to adhere only to those which are of the same kind. The calculations corresponding to the related differential equations can be made in parallel, thus a powerful GPU card allows large scale simulations. We find that the segregation kinetics is very different from the non-driven counterparts and is described by the new scaling exponents $zsimeq 1$ and $zsimeq 0.8$ for the 1:1 and the non-equal ratio of the two constituents, respectively. Our results are in agreement with a recent observation of segregating tissue cells emph{in vitro}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا