Do you want to publish a course? Click here

Simplifying large spin bootstrap in Mellin space

83   0   0.0 ( 0 )
 Added by Parijat Dey
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We set up the conventional conformal bootstrap equations in Mellin space and analyse the anomalous dimensions and OPE coefficients of large spin double trace operators. By decomposing the equations in terms of continuous Hahn polynomials, we derive explicit expressions as an asymptotic expansion in inverse conformal spin to any order, reproducing the contribution of any primary operator and its descendants in the crossed channel. The expressions are in terms of known mathematical functions and involve generalized Bernoulli (Norlund) polynomials and the Mack polynomials and enable us to derive certain universal properties. Comparing with the recently introduced reformulated equations in terms of crossing symmetric tree level exchange Witten diagrams, we show that to leading order in anomalous dimension but to all orders in inverse conformal spin, the equations are the same as in the conventional formulation. At the next order, the polynomial ambiguity in the Witten diagram basis is needed for the equivalence and we derive the necessary constraints for the same.



rate research

Read More

72 - Kausik Ghosh 2018
We consider holographic CFTs and study their large $N$ expansion. We use Polyakov-Mellin bootstrap to extract the CFT data of all operators, including scalars, till $O(1/N^4)$. We add a contact term in Mellin space, which corresponds to an effective $phi^4$ theory in AdS and leads to anomalous dimensions for scalars at $O(1/N^2)$. Using this we fix $O(1/N^4)$ anomalous dimensions for double trace operators finding perfect agreement with cite{loopal} (for $Delta_{phi}=2$). Our approach generalizes this to any dimensions and any value of conformal dimensions of external scalar field. In the second part of the paper, we compute the loop amplitude in AdS which corresponds to non-planar correlators of in CFT. More precisely, using CFT data at $O(1/N^4)$ we fix the AdS bubble diagram and the triangle diagram for the general case.
We consider general fermionic quantum field theories with a global finite group symmetry $G$, focusing on the case of 2-dimensions and torus spacetime. The modular transformation properties of the family of partition functions with different backgrounds is determined by the t Hooft anomaly of $G$ and fermion parity. For a general possibly non-abelian $G$ we provide a method to determine the modular transformations directly from the bulk 3d invertible topological quantum field theory (iTQFT) corresponding to the anomaly by inflow. We also describe a method of evaluating the character map from the real representation ring of $G$ to the group which classifies anomalies. Physically the value of the map is given by the anomaly of free fermions in a given representation. We assume classification of the anomalies/iTQFTs by spin-cobordisms. As a byproduct, for all abelian symmetry groups $G$, we provide explicit combinatorial expressions for corresponding spin-bordism invariants in terms of surgery representation of arbitrary closed spin 3-manifolds. We work out the case of $G=mathbb{Z}_2$ in detail, and, as an application, we consider the constraints that t Hooft anomaly puts on the spectrum of the infrared conformal field theory.
We explore a new way of probing scattering of closed strings in $AdS_5times S^5$, which we call `the large $p$ limit. It consists of studying four-point correlators of single-particle operators in $mathcal{N}=4$ SYM at large $N$ and large t Hooft coupling $lambda$, by looking at the regime in which the dual KK modes become short massive strings. In this regime the charge of the single-particle operators is order $lambda^{1/4}$ and the dual KK modes are in between fields and strings. Starting from SUGRA we compute the large $p$ limit of the correlators by introducing an improved $AdS_5times S^5$ Mellin space amplitude, and we show that the correlator is dominated by a saddle point. Our results are consistent with the picture of four geodesics shooting from the boundary of $AdS_5times S^5$ towards a common bulk point, where they scatter as if they were in flat space. The Mandelstam invariants are put in correspondence with the Mellin variables and in turn with certain combinations of cross ratios. At the saddle point the dynamics of the correlator is directly related to the bulk Mellin amplitude, which in the process of taking large $p$ becomes the flat space ten-dimensional S-matrix. We thus learn how to embed the full type IIB S-matrix in the $AdS_5times S^5$ Mellin amplitude, and how to stratify the latter in a large $p$ expansion. We compute the large $p$ limit of all genus zero data currently available, pointing out additional hidden simplicity of known results. We then show that the genus zero resummation at large $p$ naturally leads to the Gross-Mende phase for the minimal area surface around the bulk point. At one-loop, we first uncover a novel and finite Mellin amplitude, and then we show that the large $p$ limit beautifully asymptotes the gravitational S-matrix.
We develop a Mellin space approach to boundary correlation functions in anti-de Sitter (AdS) and de Sitter (dS) spaces. Using the Mellin-Barnes representation of correlators in Fourier space, we show that the analytic continuation between AdS$_{d+1}$ and dS$_{d+1}$ is encoded in a collection of simple relative phases. This allows us to determine the late-time tree-level three-point correlators of spinning fields in dS$_{d+1}$ from known results for Witten diagrams in AdS$_{d+1}$ by multiplication with a simple trigonometric factor. At four point level, we show that Conformal symmetry fixes exchange four-point functions both in AdS$_{d+1}$ and dS$_{d+1}$ in terms of the dual Conformal Partial Wave (which in Fourier space is a product of boundary three-point correlators) up to a factor which is determined by the boundary conditions. In this work we focus on late-time four-point correlators with external scalars and an exchanged field of integer spin-$ell$. The Mellin-Barnes representation makes manifest the analytic structure of boundary correlation functions, providing an analytic expression for the exchange four-point function which is valid for general $d$ and generic scaling dimensions, in particular massive, light and (partially-)massless fields. When $d=3$ we reproduce existing explicit results available in the literature for external conformally coupled and massless scalars. From these results, assuming the weak breaking of the de Sitter isometries, we extract the corresponding correction to the inflationary three-point function of general external scalars induced by a general spin-$ell$ field at leading order in slow roll. These results provide a step towards a more systematic understanding of de Sitter observables at tree level and beyond using Mellin space methods.
We study conformal partial waves (CPWs) in Mellin space with totally symmetric external operators of arbitrary integer spin. The exchanged spin is arbitrary, and includes mixed symmetry and (partially)-conserved representations. In a basis of CPWs recently introduced in arXiv:1702.08619, we find a remarkable factorisation of the external spin dependence in their Mellin representation. This property allows a relatively straightforward study of inversion formulae to extract OPE data from the Mellin representation of spinning 4pt correlators and in particular, to extract closed-form expressions for crossing kernels of spinning CPWs in terms of the hypergeometric function ${}_4F_3$. We consider numerous examples involving both arbitrary internal and external spins, and for both leading and sub-leading twist operators. As an application, working in general $d$ we extract new results for ${cal O}left(1/Nright)$ anomalous dimensions of double-trace operators induced by double-trace deformations constructed from single-trace operators of generic twist and integer spin. In particular, we extract the anomalous dimensions of double-trace operators $[mathcal{O}_JPhi]_{n,l}$ with ${cal O}_J$ a single-trace operator of integer spin $J$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا