ALMA imaging of C2H emission in the disk of NGC1068


Abstract in English

We study the feedback of star formation and nuclear activity on the chemistry of molecular gas in NGC1068, a nearby (D=14Mpc) Seyfert 2 barred galaxy, by analyzing if the abundances of key molecular species like ethynyl (C2H), a classical tracer of PDR, change in the different environments of the disk of the galaxy. We have used ALMA to map the emission of the hyperfine multiplet of C2H(N=1-0) and its underlying continuum emission in the central r~35(2.5kpc)-region of the disk of NGC1068 with a spatial resolution 1.0x0.7(50-70pc). We have developed a set of time-dependent chemical models to determine the origin of the C2H gas. A sizeable fraction of the total C2H line emission is detected from the r~1.3kpc starburst (SB) ring. However, the brightest C2H emission originates from a r~200pc off-centered circumnuclear disk (CND), where evidence of a molecular outflow has been previously found in other molecular tracers imaged by ALMA. We also detect significant emission that connects the CND with the outer disk. We derived the fractional abundances of C2H (X(C2H)) assuming LTE conditions. Our estimates range from X(C2H)~a few 10^-8 in the SB ring up to X(C2H)~ a few 10^-7 in the outflow region. PDR models that incorporate gas-grain chemistry are able to account for X(C2H) in the SB ring for moderately dense (n(H2)>10^4 cm^-3) and moderately UV-irradiated gas (UV-field<10xDraine field) in a steady-state regime. However, the high fractional abundances estimated for C2H in the outflow region can only be reached at very early times (T< 10^2-10^3 yr) in models of UV/X-ray irradiated dense gas (n(H2)>10^4-10^5) cm^-3). We interpret that the transient conditions required to fit the high values of X(C2H) in the outflow are likely due to UV/X-ray irradiated non-dissociative shocks associated with the highly turbulent interface between the outflow and the molecular gas in NGC1068.

Download